122 research outputs found

    Muscle mass assessment in renal disease: The role of imaging techniques

    Get PDF
    Muscle wasting is a frequent finding in patients with chronic kidney disease (CKD), especially in those with end-stage kidney disease (ESKD) on chronic dialysis. Muscle wasting in CKD is a main feature of malnutrition, and results principally from a vast array of metabolic derangements typical of the syndrome, that converge in determining reduced protein synthesis and accelerated protein catabolism. In this clinical setting, muscle wasting is also frequently associated with disability, frailty, infections, depression, worsened quality of life and increased mortality. On these grounds, the evaluation of nutritional status is crucial for an adequate management of renal patients, and consists of a comprehensive assessment allowing for the identification of malnourished patients and patients at nutritional risk. It is based essentially on the assessment of the extent and trend of body weight loss, as well as of spontaneous dietary intake. Another key component of this evaluation is the determination of body composition, which, depending on the selected method among several ones available, can identify accurately patients with decreased muscle mass. The choice will depend on the availability and ease of application of a specific technique in clinical practice based on local experience, staff resources and good repeatability over time. Surrogate methods, such as anthropometry and bioimpedance analysis (BIA), represent the most readily available techniques. Other methods based on imaging modalities [dual-energy X-ray absorptiometry (DXA), magnetic resonance imaging (MRI), and whole body computed tomography (CT)] are considered to be the “gold standard” reference methods for muscle mass evaluation, but their use is mainly confined to research purposes. New imaging modalities, such as segmental CT scan and muscle ultrasound have been proposed in recent years. Particularly, ultrasound is a promising technique in this field, as it is commonly available for bedside evaluation of renal patients in nephrology wards. However, more data are needed before a routine use of ultrasound for muscle mass evaluation can be recommended in clinical practice

    Ultrasound for Non-invasive Assessment and Monitoring of Quadriceps Muscle Thickness in Critically Ill Patients With Acute Kidney Injury

    Get PDF
    Background and aims: Critically ill patients with acute kidney injury (AKI) undergo major muscle wasting in the first few days of ICU stay. An important concern in this clinical setting is the lack of adequate tools for routine bedside evaluation of the skeletal muscle mass, both for the determination of nutritional status at admission, and for monitoring. In this regard, the present study aims to ascertain if ultrasound (US) is able to detect changes in quadriceps muscle thickness of critically ill patients with acute kidney injury (AKI) over short periods of time. Methods: This is a prospective observational study with a follow-up at 5 days. All adult patients with AKI hospitalized at the Renal ICU of the Parma University Hospital over 12 months, with a hospital stay before ICU admission no longer than 72 h, and with a planned ICU stay of at least 5 days, were eligible for the study. An experienced investigator assessed quadriceps rectus femoris and vastus intermedius thickness (QRFT and QVIT) at baseline and after 5 days of ICU stay. Results: We enrolled 30 patients with 74 ± 11 years of age and APACHE II score of 22 ± 5. Muscle thickness decreased by 15 ± 13% within the first 5 days of ICU stay (P < 0.001 for all sites as compared to ICU admission). Patients with more severe muscle loss had lower probability of being discharged home (OR: 0.04, 95%CI: 0.00–0.74; P = 0.031). Conclusions: In critically ill patients with AKI, bedside muscle US identifies patients with accelerated muscle wasting

    The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury

    Get PDF
    INTRODUCTION: The study was aimed at verifying whether the occurrence of hypernatremia during the intensive care unit (ICU) stay increases the risk of death in patients with severe traumatic brain injury (TBI). We performed a retrospective study on a prospectively collected database including all patients consecutively admitted over a 3-year period with a diagnosis of TBI (post-resuscitation Glasgow Coma Score < or = 8) to a general/neurotrauma ICU of a university hospital, providing critical care services in a catchment area of about 1,200,000 inhabitants. METHODS: Demographic, clinical, and ICU laboratory data were prospectively collected; serum sodium was assessed an average of three times per day. Hypernatremia was defined as two daily values of serum sodium above 145 mmol/l. The major outcome was death in the ICU after 14 days. Cox proportional-hazards regression models were used, with time-dependent variates designed to reflect exposure over time during the ICU stay: hypernatremia, desmopressin acetate (DDAVP) administration as a surrogate marker for the presence of central diabetes insipidus, and urinary output. The same models were adjusted for potential confounding factors. RESULTS: We included in the study 130 TBI patients (mean age 52 years (standard deviation 23); males 74%; median Glasgow Coma Score 3 (range 3 to 8); mean Simplified Acute Physiology Score II 50 (standard deviation 15)); all were mechanically ventilated; 35 (26.9%) died within 14 days after ICU admission. Hypernatremia was detected in 51.5% of the patients and in 15.9% of the 1,103 patient-day ICU follow-up. In most instances hypernatremia was mild (mean 150 mmol/l, interquartile range 148 to 152). The occurrence of hypernatremia was highest (P = 0.003) in patients with suspected central diabetes insipidus (25/130, 19.2%), a condition that was associated with increased severity of brain injury and ICU mortality. After adjustment for the baseline risk, the incidence of hypernatremia over the course of the ICU stay was significantly related with increased mortality (hazard ratio 3.00 (95% confidence interval: 1.34 to 6.51; P = 0.003)). However, DDAVP use modified this relation (P = 0.06), hypernatremia providing no additional prognostic information in the instances of suspected central diabetes insipidus. CONCLUSIONS: Mild hypernatremia is associated with an increased risk of death in patients with severe TBI. In a proportion of the patients the association between hypernatremia and death is accounted for by the presence of central diabetes insipidus

    Ultrasound to address medullary sponge kidney: A retrospective study

    Get PDF
    Background: Medullary sponge kidney (MSK) is a rare disease characterized by cystic dilatation of papillary collecting ducts. Intravenous urography is still considered the gold standard for diagnosis. We identified a cohort of patients from our outpatient clinic with established diagnosis of MSK to outline some ultrasonographic characteristics that may help establish a diagnosis. Methods: We conducted a retrospective study of patients seen between January 1st 2009 and January 1st 2019 in our clinic. Out of 4321 patients, 18 had a diagnosis of MSK. We reviewed their clinical and family history, laboratory data and imaging studies. Specifically, we focused on ultrasound imaging. Results: Patients were referred to our outpatient clinic because of renal impairment (44%), family history of nephropathy (17%), nephrolithiasis or an established diagnosis of MSK (39%). Seventy-two percent of patients presented with chronic kidney disease, 22% required hemodialysis. Urinary tract infections (44%), nephrolithiasis (33%), microscopic hematuria (50%) and proteinuria (44%) were reported. Seven patients underwent computed tomography; all of them received ultrasound. Ultrasound examination showed bilateral renal cysts, usually small and located in the renal medulla, and microcalcifications located in the medulla or within the cysts. Conclusion: We identified a peculiar tetrad associated with MSK: 1) hypoechoic medullary areas, 2) hyperechoic spots, 3) microcystic dilatation of papillary zone, 4) multiple calcifications (linear, small stones or calcified intracystic sediment) in each papilla. The presence of this diagnostic tetrad, added to laboratory data and clinical history, could be helpful in the differential diagnosis to identify patients with MSK

    Sustained low-efficiency dialysis with regional citrate anticoagulation in critically ill patients with COVID-19 associated AKI: A pilot study

    Get PDF
    Acute Kidney Injury (AKI) is a frequent complication in critically ill patients with Coronavirus disease 2019 (COVID-19), and it has been associated with worse clinical outcomes, especially when Kidney Replacement Therapy (KRT) is required. A condition of hypercoagulability has been frequently reported in COVID-19 patients, and this very fact may complicate KRT management. Sustained Low Efficiency Dialysis (SLED) is a hybrid dialysis modality increasingly used in critically ill patients since it allows to maintain acceptable hemodynamic stability and to overcome the increased clotting risk of the extracorporeal circuit, especially when Regional Citrate Anticoagulation (RCA) protocols are applied. Notably, given the mainly diffusive mechanism of solute transport, SLED is associated with lower stress on both hemofilter and blood cells as compared to convective KRT modalities. Finally, RCA, as compared with heparin-based protocols, does not further increase the already high hemorrhagic risk of patients with AKI. Based on these premises, we performed a pilot study on the clinical management of critically ill patients with COVID-19 associated AKI who underwent SLED with a simplified RCA protocol. Low circuit clotting rates were observed, as well as adequate KRT duration was achieved in most cases, without any relevant metabolic complication nor worsening of hemodynamic status

    Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis

    Get PDF
    © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism Background & aims Protein-Energy Wasting (PEW) is the depletion of protein/energy stores observed in the most advanced stages of Chronic Kidney Disease (CKD). PEW is highly prevalent among patients on chronic dialysis, and is associated with adverse clinical outcomes, high morbidity/mortality rates and increased healthcare costs. This narrative review was aimed at exploring the pathophysiology of PEW in end-stage renal disease (ESRD) on hemodialysis. The main aspects of nutritional status evaluation, intervention and monitoring in this clinical setting were described, as well as the current approaches for the prevention and treatment of ESRD-related PEW. Methods An exhaustive literature search was performed, in order to identify the relevant studies describing the epidemiology, pathogenesis, nutritional intervention and outcome of PEW in ESRD on hemodialysis. Results and conclusion The pathogenesis of PEW is multifactorial. Loss of appetite, reduced intake of nutrients and altered lean body mass anabolism/catabolism play a key role. Nutritional approach to PEW should be based on a careful and periodic assessment of nutritional status and on timely dietary counseling. When protein and energy intakes are reduced, nutritional supplementation by means of specific oral formulations administered during the hemodialysis session may be the first-step intervention, and represents a valid nutritional approach to PEW prevention and treatment since it is easy, effective and safe. Omega-3 fatty acids and fibers, now included in commercially available preparations for renal patients, could lend relevant added value to macronutrient supplementation. When oral supplementation fails, intradialytic parenteral nutrition can be implemented in selected patients

    Reduced mortality in COVID-19 patients treated with colchicine: Results from a retrospective, observational study

    Get PDF
    Objectives Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed. We hypothesized that colchicine, by counteracting proinflammatory pathways implicated in the uncontrolled inflammatory response of COVID-19 patients, reduces pulmonary complications, and improves survival. Methods This retrospective study included 71 consecutive COVID-19 patients (hospitalized with pneumonia on CT scan or outpatients) who received colchicine and compared with 70 control patients who did not receive colchicine in two serial time periods at the same institution. We used inverse probability of treatment propensity-score weighting to examine differences in mortality, clinical improvement (using a 7-point ordinary scale), and inflammatory markers between the two groups. Results Amongst the 141 COVID-19 patients (118 [83.7%] hospitalized), 70 (50%) received colchicine. The 21-day crude cumulative mortality was 7.5% in the colchicine group and 28.5% in the control group (P = 0.006; adjusted hazard ratio: 0.24 [95%CI: 0.09 to 0.67]); 21-day clinical improvement occurred in 40.0% of the patients on colchicine and in 26.6% of control patients (adjusted relative improvement rate: 1.80 [95%CI: 1.00 to 3.22]). The strong association between the use of colchicine and reduced mortality was further supported by the diverging linear trends of percent daily change in lymphocyte count (P = 0.018), neutrophilto- lymphocyte ratio (P = 0.003), and in C-reactive protein levels (P = 0.009). Colchicine was stopped because of transient side effects (diarrhea or skin rashes) in 7% of patients. Conclusion In this retrospective cohort study colchicine was associated with reduced mortality and accelerated recovery in COVID-19 patients. This support the rationale for current larger randomized controlled trials testing the safety/efficacy profile of colchicine in COVID-19 patients. Copyright
    corecore