466 research outputs found
Sex hormones in SARS-CoV-2 susceptibility: key players or confounders?
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic
Cardiomyocyte-specific estrogen receptor alpha increases angiogenesis, lymphangiogenesis and reduces fibrosis in the female mouse heart post-myocardial infarction
Experimental studies showed that 17{beta}-estradiol (E2) and activated Estrogen Receptors (ER) protect the heart from ischemic injury. However, the underlying molecular mechanisms are not well understood. To investigate the role of ER{alpha} in cardiomyocytes in the setting of myocardial ischemia, we generated transgenic mice with cardiomyocyte-specific overexpression of ER-{alpha} (ER{alpha}-OE) and subjected them to Myocardial Infarction (MI). At the basal level, female and male ER{alpha}-OE mice showed increased Left Ventricular (LV) mass, LV volume and cardiomyocyte length. Two weeks after MI, LV volume was significantly increased and LV wall thickness decreased in female and male WT-mice and male ER{alpha}-OE, but not in female ER{alpha}-OE mice. ER{alpha}-OE enhanced expression of angiogenesis and lymphangiogenesis markers (Vegf, Lyve-1), and neovascularization in the peri-infarct area in both sexes. However, attenuated level of fibrosis and higher phosphorylation of JNK signaling pathway could be detected only in female ER{alpha}-OE after MI. In conclusion, our study indicates that ER{alpha} protects female mouse cardiomyocytes from the sequelae of ischemia through induction of neovascularization in a paracrine fashion and impaired fibrosis, which together may contribute to the attenuation of cardiac remodelling
Contribution of comorbidities to functional impairment is higher in heart failure with preserved than with reduced ejection fraction
Background
Comorbidities negatively affect prognosis more strongly in heart failure with preserved (HFpEF) than with reduced (HFrEF) ejection fraction. Their comparative impact on physical impairment in HFpEF and HFrEF has not been evaluated so far.
Methods and results
The frequency of 12 comorbidities and their impact on NYHA class and SF-36 physical functioning score (SF-36 PF) were evaluated in 1,294 patients with HFpEF and 2,785 with HFrEF. HFpEF patients had lower NYHA class (2.0 ± 0.6 vs. 2.4 ± 0.6, p 0.05) negative effect in both groups. Obesity, coronary artery disease and peripheral arterial occlusive disease exerted a significantly (p < 0.05) more adverse effect in HFpEF, while hypertension and hyperlipidemia were associated with fewer (p < 0.05) symptoms in HFrEF only. The total impact of comorbidities on NYHA (AUC for prediction of NYHA III/IV vs. I/II) and SF-36 PF (r 2) in multivariate analyses was approximately 1.5-fold higher in HFpEF, and also much stronger than the impact of a 10% decrease in ejection fraction in HFrEF or a 5 mm decrease in left ventricular end-diastolic diameter in HFpEF.
Conclusion
The impact of comorbidities on physical impairment is higher in HFpEF than in HFrEF. This should be considered in the differential diagnosis and in the treatment of patients with HFpEF
Immunoreactivity of the SARS-CoV-2 entry proteins ACE-2 and TMPRSS-2 in murine models of hormonal manipulation, ageing, and cardiac injury
Previous work indicates that SARS-CoV-2 virus entry proteins angiotensin-converting enzyme 2 (ACE-2) and the cell surface transmembrane protease serine 2 (TMPRSS-2) are regulated by sex hormones. However, clinical studies addressing this association have yielded conflicting results. We sought to analyze the impact of sex hormones, age, and cardiovascular disease on ACE-2 and TMPRSS-2 expression in different mouse models. ACE-2 and TMPRSS-2 expression was analyzed by immunostaining in a variety of tissues obtained from FVB/N mice undergoing either gonadectomy or sham-surgery and being subjected to ischemia-reperfusion injury or transverse aortic constriction surgery. In lung tissues sex did not have a significant impact on the expression of ACE-2 and TMPRSS-2. On the contrary, following myocardial injury, female sex was associated to a lower expression of ACE-2 at the level of the kidney tubules. In addition, after myocardial injury, a significant correlation between younger age and higher expression of both ACE-2 and TMPRSS-2 was observed for lung alveoli and bronchioli, kidney tubules, and liver sinusoids. Our experimental data indicate that gonadal hormones and biological sex do not alter ACE-2 and TMPRSS-2 expression in the respiratory tract in mice, independent of disease state. Thus, sex differences in ACE-2 and TMPRSS-2 protein expression observed in mice may not explain the higher disease burden of COVID-19 among men
Sex differences in the SOFA score of ICU patients with sepsis or septic shock: a nationwide analysis.
BACKGROUND
The Sequential Organ Failure Assessment (SOFA) score is an important tool in diagnosing sepsis and quantifying organ dysfunction. However, despite emerging evidence of differences in sepsis pathophysiology between women and men, sex is currently not being considered in the SOFA score. We aimed to investigate potential sex-specific differences in organ dysfunction, as measured by the SOFA score, in patients with sepsis or septic shock and explore outcome associations.
METHODS
Retrospective analysis of sex-specific differences in the SOFA score of prospectively enrolled ICU patients with sepsis or septic shock admitted to one of 85 certified Swiss ICUs between 01/2021 and 12/2022.
RESULTS
Of 125,782 patients, 5947 (5%) were admitted with a clinical diagnosis of sepsis (2244, 38%) or septic shock (3703, 62%). Of these, 5078 (37% women) were eligible for analysis. A statistically significant difference of the total SOFA score on admission was found between women (mean 7.5 ± SD 3.6 points) and men (7.8 ± 3.6 points, Wilcoxon rank-sum p < 0.001). This was driven by differences in the coagulation (p = 0.008), liver (p < 0.001) and renal (p < 0.001) SOFA components. Differences between sexes were more prominent in younger patients < 52 years of age (women 7.1 ± 4.0 points vs men 8.1 ± 4.2 points, p = 0.004). No sex-specific differences were found in ICU length of stay (women median 2.6 days (IQR 1.3-5.3) vs men 2.7 days (IQR 1.2-6.0), p = 0.13) and ICU mortality (women 14% vs men 15%, p = 0.17).
CONCLUSION
Sex-specific differences exist in the SOFA score of patients admitted to a Swiss ICU with sepsis or septic shock, particularly in laboratory-based components. Although the clinical meaningfulness of these differences is unclear, a reevaluation of sex-specific thresholds for SOFA score components is warranted in an attempt to make more accurate and individualised classifications
Imaging of heart disease in women: review and case presentation
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. Although major diagnostic and therapeutic advances have significantly improved the prognosis of patients with CVD in the past decades, these advances have less benefited women than age-matched men. Noninvasive cardiac imaging plays a key role in the diagnosis of CVD. Despite shared imaging features and strategies between both sexes, there are critical sex disparities that warrant careful consideration, related to the selection of the most suited imaging techniques, to technical limitations, and to specific diseases that are overrepresented in the female population. Taking these sex disparities into consideration holds promise to improve management and alleviate the burden of CVD in women. In this review, we summarize the specific features of cardiac imaging in four of the most common presentations of CVD in the female population including coronary artery disease, heart failure, pregnancy complications, and heart disease in oncology, thereby highlighting contemporary strengths and limitations. We further propose diagnostic algorithms tailored to women that might help in selecting the most appropriate imaging modality
Lymphocyte predominant cells detect Moraxella catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma.
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma of B-cell origin with frequent expression of functional B-cell receptors (BCRs). Here we report that expression cloning followed by antigen screening identifies DNA-directed RNA polymerase beta' (RpoC) from Moraxella catarrhalis as frequent antigen of BCRs of IgD <sup>+</sup> LP cells. Patients show predominance of HLA-DRB1*04/07 and the IgVH genes encode extraordinarily long CDR3s. High-titer, light-chain-restricted anti-RpoC IgG1/κ-type serum-antibodies are additionally found in these patients. RpoC and MID/hag, a superantigen co-expressed by Moraxella catarrhalis that is known to activate IgD <sup>+</sup> B cells by binding to the Fc domain of IgD, have additive activation effects on the BCR, the NF-κB pathway and the proliferation of IgD <sup>+</sup> DEV cells expressing RpoC-specific BCRs. This suggests an additive antigenic and superantigenic stimulation of B cells with RpoC-specific IgD <sup>+</sup> BCRs under conditions of a permissive MHC-II haplotype as a model of NLPHL lymphomagenesis, implying future treatment strategies
Coarctation of the aorta and mild to moderate developmental delay in a child with a de novo deletion of chromosome 15(q21.1q22.2)
BACKGROUND: Deletion of 15q21q22 is a rare chromosomal anomaly. To date, there have been nine reports describing ten individuals with different segmental losses involving 15q21 and 15q22. Many of these individuals have common features of growth retardation, hypotonia and moderate to severe mental retardation. Congenital heart disease has been described in three individuals with interstitial deletion involving this region of chromosome 15. CASE PRESENTATION: We report a child with coarctation of the aorta, partial agenesis of corpus callosum and mild to moderate developmental delay, with a de novo deletion of 15q21.1q22.2, detected by the array Comparative Genomic Hybridization (CGH). We utilized chromosome 15-specific microarray-based CGH to define the chromosomal breakpoints in this patient. CONCLUSION: This is the first description of mapping of an interstitial deletion involving the chromosome 15q21q22 segment using the chromosome 15-specific array-CGH. The report also expands the spectrum of clinical phenotype associated with 15q21q22 deletion
- …