56 research outputs found

    Protein degradation of black carp (Mylopharyngodon piceus) muscle during cold storage

    Get PDF
    This study investigated the effects of cold storage at different temperatures (4, -0.5, -3, and -20 degrees C) on protein degradation and its relationship to structural changes of black carp muscle. At -0.5 and 4 degrees C, major structural changes occurred, including the formation of gaps between myofibers and myofibrils, breakage of myofibrils and myofibers, and degradation of sarcoplasmic reticulum. Gel-based proteomic analysis showed that these structural changes were accompanied by degradation of a series of myofibrillar proteins, including titin, nebulin, troponin, myosin, myomesin, myosin-binding protein, and a-actinin. Loss of extractable gelatinolytic and caseinolytic protease activities was also observed. At -3 and -20 degrees C, formation of ice crystals was the most noticeable change. The major proteins were degraded at different locations in the black carp muscle, and gelatinolytic and caseinolytic proteases appear to contribute to the degradation of those proteins.Peer reviewe

    Effect of Natural Zeolite (Clinoptilolite) on in vitro Biogenic Amine Production by Gram Positive and Gram Negative Pathogens

    Get PDF
    The effect of two levels of clinoptilolite (1 and 5%) on the production of biogenic amines (BA) and ammonia (AMN) by Gram positive (Staphylococcus aureus, Enterococcus faecalis, and Listeria monocytogenes) and Gram negative bacteria (Aeromonas hydrophila, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Salmonella Parathypi A), in tyrosine decarboxylase broth (TDB) was studied. A. hydrophila and E. coli produced the highest amounts of amines which were 1223.06 and 2627.90 mg/l, respectively. All strains were able to decarboxylate tyrosine to tyramine (TYR) with E. coli being the highest (1657.19 mg/l). A. hydrophila formed >50 mg/l histamine (HIS) while the other strains produced none or very low concentrations (<4 mg/l). Among Gram-positive pathogens, E. faecalis was characterized as the main amine producer (478.23 mg/l). Although dependent on bacterial strain and level used, the natural zeolite clinoptilolite can be used to decrease BA and AMN production by bacterial strains that are of health concern.Practical Applications: Uses of natural prodcuts for biogenic amines inhibition. Clinoptilolite was used to reduce the amounts of amines such as spermine, putrescine, and dopamine produced by pathogenic and spoilage bacteria

    Fatty Acid Composition and Sensory Characteristics of Eggs Obtained from Hens Fed Flaxseed Oil, Dried Whitebait and/or Fructo-oligosaccharide

    Get PDF
    This study was conducted to assess the effects of flaxseed oil and dried whitebait as a source of ω-3 fatty acids (ω-3 FA), which could be used to produce eggs enriched with ω-3 FA, and of fructo-oligosaccharide (FOS) as a source of prebiotics on performance of hens (commercial Hy-Line Brown laying hens), and FA composition, internal quality, and sensory characteristics of the eggs. Dietary FOS increased egg weight. The amounts of α-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) in the eggs from the hens fed the flaxseed oil alone or flaxseed oil+dried whitebait diets were higher than those of the control. Hedonic scores for off-flavor, fishy flavor, buttery taste and overall acceptability of the eggs from the hens fed the diet containing flaxseed oil+ dried whitebait were lower (p<0.05) than those of the control. Overall acceptability of the eggs from the hens fed the diet containing soybean oil+dried whitebait was lower (p<0.05) than that of the control. However, all the sensory attributes of the eggs from the hens fed the diet containing flaxseed oil, dried whitebait and FOS were not significantly different from those of the control. These results confirmed that flaxseed oil increases the ALA content in the eggs and a combination of flaxseed oil and dried whitebait increases EPA and DHA in the eggs. Of significance was that addition of FOS to the flaxseed oil+dried whitebait diet improves the sensory characteristics of the eggs enriched with ω-3 FA

    Characterization and effect of optimized spray-drying conditions on spray-dried coriander essential oil

    Get PDF
    Coriander (Coriandrum sativum L.) essential oil (CEO) has many beneficial features, including antimicrobial and antifungal properties along with good aroma. It also has an important role in food processing and preservation. However, CEO is highly volatile and sensitive to external factors (heat, light and oxygen), as well as susceptible to lipid oxidation due to environmental and general processing conditions. This limits water solubility, making it difficult to incorporate CEO into aqueous food matrices, which further limits their industrial application. Spray-drying encapsulation may prevent CEO oxidation, increase CEO oxidative stability and improve their physicochemical properties. In this study, spray-dried CEO (SDCEO) was prepared using a mini laboratory-scale spray-dryer and the processing conditions were optimized. The SDCEO were characterized in respect to free fatty acids (FFA), peroxide values (PV), fatty acid (FA) profiles, Fourier-transform infrared spectroscopy (FTIR) and physical morphology by scanning electron microscopy (SEM). Results indicated that the maximum value of FFA, PV, fatty acid composition (including petroselinic, linoleic and oleic acids) in SDCEO were observed at the following spray-drying conditions: an inlet-air temperature (IAT) of 140 °C, needle speed (NS) of 2 s and the wall-material (WM) at 25%. The minimum values were observed at an IAT of 180 °C, NS of 4 s and WM of 30%. Analysis of variance and the interaction effects of independent factors showed that IAT and WM significantly positively influenced the response for good oxidative stability. Thus, SDCEO is likely to be used as a natural active ingredient in the food processing, cosmetic, nutraceutical and pharmaceutical industries with high stability, and may be stored for a long time without evaporation or oxidation.info:eu-repo/semantics/publishedVersio

    The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses

    Get PDF
    Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are wellknown to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection

    Digital transformation in the agri-food industry: recent applications and the role of the COVID-19 pandemic

    Get PDF
    Providing food has become more complex because of climate change and other environmental and societal stressors, such as political instability, the growth in the world population, and outbreaks of new diseases, especially the COVID-19 pandemic. In response to these challenges, the agri-food industry has increased its efforts to shift to using more digital tools and other advanced technologies. The transition toward digital has been part of the fourth industrial revolution (called Industry 4.0) innovations that have and are reshaping most industries. This literature review discusses the potential of implementing digital technologies in the agri-food industry, focusing heavily on the role of the COVID-19 pandemic in fostering the adoption of greater digitalization of food supply chains. Examples of the use of these digital innovations for various food applications, and the barriers and challenges will be highlighted. The trend toward digital solutions has gained momentum since the advent of Industry 4.0 and implementations of these solutions have been accelerated by the outbreak of the COVID-19 pandemic. Important digital technology enablers that have high potential for mitigating the negative effects of both the current global health pandemic and the environmental crisis on food systems include artificial intelligence, big data, the Internet of Things, blockchain, smart sensors, robotics, digital twins, and virtual and augmented reality. However, much remains to be done to fully harness the power of Industry 4.0 technologies and achieve widespread implementation of digitalization in the agriculture and food industries

    The fourth industrial revolution in the food industry—part II: Emerging food trends

    Get PDF
    The food industry has recently been under unprecedented pressure due to major global challenges, such as climate change, exponential increase in world population and urbanization, and the worldwide spread of new diseases and pandemics, such as the COVID-19. The fourth industrial revolution (Industry 4.0) has been gaining momentum since 2015 and has revolutionized the way in which food is produced, transported, stored, perceived, and consumed worldwide, leading to the emergence of new food trends. After reviewing Industry 4.0 technologies (e.g. artificial intelligence, smart sensors, robotics, blockchain, and the Internet of Things) in Part I of this work (Hassoun, Aït-Kaddour, et al. 2022. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1–17.), this complimentary review will focus on emerging food trends (such as fortified and functional foods, additive manufacturing technologies, cultured meat, precision fermentation, and personalized food) and their connection with Industry 4.0 innovations. Implementation of new food trends has been associated with recent advances in Industry 4.0 technologies, enabling a range of new possibilities. The results show several positive food trends that reflect increased awareness of food chain actors of the food-related health and environmental impacts of food systems. Emergence of other food trends and higher consumer interest and engagement in the transition toward sustainable food development and innovative green strategies are expected in the future.The fourth industrial revolution in the food industry—part II: Emerging food trendssubmittedVersio

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes

    Health and Safety Guidance for Small Scale Composting

    Full text link
    Support for this project was provided by Cornell University Agricultural Experiment Station, Cornell College of Agriculture and Life Sciences, and Cornell Cooperative Extensio
    • …
    corecore