45 research outputs found

    The Importance of Contamination Knowledge - Insights into Mars Sample Return

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of all past, present, and future extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates all reference and witness materials for each mission (e.g., flight and non-flight hardware coupons; lubricants; non-flight, flight-like, and flown witness plates). These reference and witness materials provide the scientific community with the fundamental ability to reconstruct the contamination/alteration history of the sample collection through the course of the mission, with the overall goal of strengthening the scientific conclusions drawn from the study of returned materials. The information gained from characterizing the physical, biological, inorganic, and organic chemical properties of reference and witness materials is defined as the Contamination Knowledge (CK) of the sample collection. Unlike the data collected for Contamination Control (CC) and Planetary Protection (PP), CK is exclusively concerned with preserving reference and witness materials for study by future scientists upon sample return. Although CC and PP data collected for sample integrity and forward contamination purposes can be complementary to CK, they are two separate data sets with distinct objectives. A robust collection of samples for CK is necessary to allow the extraterrestrial material in a returned sample to be distinguished from terrestrial contamination. Traditionally CK is utilized by sample scientists in order to accomplish the missions scientific objectives, however this information can also be utilized by the Office of Planetary Protection to help evaluate the presence of any back contamination. Mars 2020, the first phase of a potential multipart Mars Sample Return (MSR) campaign, is expected to contribute to NASAs Mars Exploration Program Science Goals by filling in knowledge gaps concerning: 1) the existence of past or present life on Mars, 2) the past and present climate of Mars, 3) the geology of Mars, and 4) hazards associated with human exploration of Mars. Although there is debate concerning which samples will best answer these questions, the necessity for proper sample blanks is well-understood. The CC and PP requirements, driven by the restricted Class V mission designation, are the most stringent of any sample return mission in recent history. The extremely low levels of allowable terrestrial contamination on the spacecraft and rover can complicate these analyses given the detection limits of current analytical instrumentation, especially in the case of biological contamination. By collecting and curating unanalyzed samples specifically for CK, future sample scientists will not be relegated to: 1) relying on data collected using possibly obsolete tools and techniques for return sample blanks, or 2) using remnants of extracted and/or cultured samples from ATLO (Assembly, Test, and Launch Operations), which could be incompatible with the desired experimental endpoints or state-of-the-art techniques available at the time of sample return.The addition of biological experimental endpoints to a sample return campaigns objectives broadens the requisite range in preservation environments (e.g. inert ultra-pure nitrogen gaseous environment at 18 degrees Centigrade versus less than or equal to minus 80 degrees Centigrade) and types of CK samples. As a result, the Curation Office will also curate the following CK samples at less than or equal to minus 80 degrees Centigrade for the Mars 2020 mission: 1) unanalyzed swabs and wipes in sterile containers, 2) all recirculation filters from the clean rooms used for sample and caching subsystem assembly and all filters from the laminar flow benches used to assemble sample intimate hardware, and 3) witness plates collecting airborne contamination within the assembly clean rooms. It has been Curation Office policy since the Apollo missions to preserve as many pristine samples as possible for future scientific research. Although CK is required to be collected for all stages of the MSR campaign, the CK for the Mars 2020 mission is the most critical for understanding contamination in the returned samples given the intimacy between the Martian samples and the Mars 2020 flight hardware. This presentation highlights the importance of CK for sample return missions as well as the traditional and novel types of CK samples required for a successful MSR campaign

    Mobile/Modular BSL-4 Containment Facilities Integrated into a Curation Receiving Laboratory for Restricted Earth Return Missions

    Get PDF
    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection (PP) Office require sample containment and biohazard testing upon return to Earth. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, this is Biosafety Level (BSL) 4 containment. In the U.S., the Biosafety in Microbiological and Biomedical Laboratories publication authored by the U.S. Department of Health and Human Services (HHS): Public Health Service, Centers for Disease Control and Prevention, and the National Institutes of Health houses the primary recommendations, standards, and design requirements for all BSL labs. Past mission concept studies for constructing a NASA Curation Receiving Laboratory with an integrated BSL-4 quarantine and biohazard testing facility have been estimated in the hundreds of millions of dollars (USD). As an alternative option, we have conducted a trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a fraction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in ~ 90% cost reduction when compared to traditional BSL-4 construction methods without compromising the preservation of the samples or Earth. For the design/construction requirements of a mobile/modular BSL-4 containment, we used the established HHS document standards and protocols for manipulation of agents in Class III Biosafety Cabinets (BSC; i.e., negative pressure gloveboxes) that are currently followed in operational BSL-4 facilities in the U.S

    The Importance of Contamination Knowledge in Curation - Insights into Mars Sample Return

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates flight and non-flight reference materials and other materials from spacecraft assembly (e.g., lubricants, paints and gases) of sample return missions that would have the potential to cross-contaminate a present or future NASA astromaterials collection

    Perserving Samples and Their Scientific Integrity - Insights into MSR from the Astromaterials Acquisition and Curation Office at NASA Johnson Space Center

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of all past, present, and future extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates flight and non-flight reference materials and other materials from spacecraft assembly of sample return missions that would have the potential to cross-contaminate a present or future NASA astromaterials collection. These materials are primarily collected during the assembly, test, and launch operations (ATLO) phase and after flight during the recovery and curation phase. In addition, the Curation Office curates non-flight, flight-like, and flown witness plates for sample return missions. These reference materials and witness plates provide the scientific community with the fundamental ability to reconstruct the contamination/alteration history of the sample collection through the course of the mission, with the overall goal of strengthening the scientific conclusions drawn from the study of returned materials

    Advanced Curation Activities at NASA: Preparation for Upcoming Missions

    Get PDF
    The responsibility for curating NASA's astromaterials collections falls to the NASA Curation Office at Johnson Space Center. Under the governing document, NASA Policy Directive (NPD) 7100.10F and derivative requirements documents, JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions to include material returned in Mars Sample Return (MSR) efforts, OSIRIS-REx, NASA's subset of Hayabusa-2 samples, and any other sample return missions. The Directive defines Curation as activities including documentation, preservation, sample preparation, distribution, and tracking of samples for research, education, and public outreach. In this abstract we will describe Curation's research and development efforts to improve the care of existing collections and prepare for future NASA sample return missions. These efforts are collectively referred to as Advanced Curation, a term first coined in 2002

    Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    Get PDF
    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation

    In-situ Optimized Substrate Witness Plates: Ground Truth for Key Processes on the Moon and Other Planets

    Full text link
    Future exploration efforts of the Moon, Mars and other bodies are poised to focus heavily on persistent and sustainable survey and research efforts, especially given the recent interest in a long-term sustainable human presence at the Moon. Key to these efforts is understanding a number of important processes on the lunar surface for both scientific and operational purposes. We discuss the potential value of in-situ artificial substrate witness plates, powerful tools that can supplement familiar remote sensing and sample acquisition techniques and provide a sustainable way of monitoring processes in key locations on planetary surfaces while maintaining a low environmental footprint. These tools, which we call Biscuits, can use customized materials as wide ranging as zircon-based spray coatings to metals potentially usable for surface structures, to target specific processes/questions as part of a small, passive witness plate that can be flexibly placed with respect to location and total time duration. We examine and discuss unique case studies to show how processes such as water presence/transport, presence and contamination of biologically relevant molecules, solar activity related effects, and other processes can be measured using Biscuits. Biscuits can yield key location sensitive, time integrated measurements on these processes to inform scientific understanding of the Moon and enable operational goals in lunar exploration. While we specifically demonstrate this on a simulated traverse and for selected examples, we stress all groups interested in planetary surfaces should consider these adaptable, low footprint and highly informative tools for future exploration.Comment: Accepted to Earth and Space Science, Will be updated upon publicatio

    Centimeter-long electron transport in marine sediments via conductive minerals

    Get PDF
    © 2015 International Society for Microbial Ecology All rights reserved. Centimeter-long electron conduction through marine sediments, in which electrons derived from sulfide in anoxic sediments are transported to oxygen in surficial sediments, may have an important influence on sediment geochemistry. Filamentous bacteria have been proposed to mediate the electron transport, but the filament conductivity could not be verified and other mechanisms are possible. Surprisingly, previous investigations have never actually measured the sediment conductivity or its basic physical properties. Here we report direct measurements that demonstrate centimeter-long electron flow through marine sediments, with conductivities sufficient to account for previously estimated electron fluxes. Conductivity was lost for oxidized sediments, which contrasts with the previously described increase in the conductivity of microbial biofilms upon oxidation. Adding pyrite to the sediments significantly enhanced the conductivity. These results suggest that the role of conductive minerals, which are more commonly found in sediments than centimeter-long microbial filaments, need to be considered when modeling marine sediment biogeochemistry

    Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility

    Get PDF
    The Mars Sample Return Planning Group 2 (MSPG2) was tasked with identifying the steps that encompass all the curation activities that would happen within the MSR Sample Receiving Facility (SRF) and any anticipated curation-related requirements. An area of specific interest is the necessary analytical instrumentation. The SRF would be a Biosafety Level-4 facility where the returned MSR flight hardware would be opened, the sample tubes accessed, and the martian sample material extracted from the tubes. Characterization of the essential attributes of each sample would be required to provide enough information to prepare a sample catalog used in guiding the preparation of sample-related proposals by the world’s research community and informing decisions by the sample allocation committee. The sample catalog would be populated with data and information generated during all phases of activity, including data derived concurrent with Mars 2020 sample-collecting rover activity, sample transport to Earth, and initial sample characterization within the SRF. We conclude that initial sample characterization can best be planned as a set of three sequential phases, which we have called Pre-Basic Characterization (Pre-BC), Basic Characterization (BC), and Preliminary Examination (PE), each of which requires a certain amount of instrumentation. Data on specific samples and subsamples obtained during sample safety assessments and time-sensitive scientific investigations would also be added to the catalog. There are several areas where future work would be beneficial to prepare for the receipt of samples, which would include the design of a sample tube isolation chamber and a strategy for opening the sample tubes and removing dust from the tube exteriors

    Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR)

    Get PDF
    The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive—they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report
    corecore