118 research outputs found

    Optic disc pit maculopathy: a two-year nationwide prospective study.

    Get PDF
    Purpose To identify the incidence, presenting features, treatment, and clinical course of optic disc pit maculopathy (ODPM) in the United Kingdom (UK). Design A 2-year nationwide prospective population-based study. Subjects All new incident cases of ODPM presenting to UK ophthalmologists using the British Ophthalmic Surveillance Unit monthly reporting system. Methods All reporting ophthalmologists were sent an initial questionnaire requesting data on previous medical and ophthalmic history, presentation details, investigation findings, and management. A further questionnaire was sent at 12 months post diagnosis to ascertain further outcome data. Main Outcome Measures Visual acuity at initial presentation, at 1 year, and after any intervention. Foveal involvement and optical coherence tomography (OCT) findings, including retinal layers affected, and the location and size of the optic disc pit. Management, including observation, vitrectomy, and associated procedures. Results There were 74 confirmed new cases, giving an annual incidence of approximately 1 per 2 million. Complete data were available on 70 patients (70 eyes) at baseline and 68 after 1 year. There were 35 (50%) female patients with a mean age of 35 years (range, 3–82 years). Visual acuity at baseline ranged from 6/5 to hand movements. In 43 patients (61%) subretinal fluid (SRF) was present, whereas 27 (39%) had intraretinal fluid only. The presence of SRF was associated with worse vision and foveal involvement. Of the 53 eyes initially observed with 1-year follow-up, 10 (19%) deteriorated and 9 (16%) improved on OCT; eyes with SRF were more likely to worsen and those without SRF were more likely to improve. Fifteen of the 70 patients (21%) at baseline had primary surgery and a further 10 had deferred surgery within 1 year of presentation; 19 of these 25 eyes (76%) showed anatomic success with a dry fovea at 1 year of follow-up, and 15 (60%) had a greater than 0.1 logMAR improvement in visual acuity. Conclusion The incidence and presenting features of ODPM were defined. Patients with SRF had worse vision and were more likely to deteriorate than patients with intraretinal fluid only. Surgery was anatomically successful in 75% of cases. Patients without SRF tended to remain stable with observation

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    Validating epilepsy diagnoses in routinely collected data

    Get PDF
    Purpose: Anonymised, routinely-collected healthcare data is increasingly being used for epilepsy research. We validated algorithms using general practitioner (GP) primary healthcare records to identify people with epilepsy from anonymised healthcare data within the Secure Anonymised Information Linkage (SAIL) databank in Wales, UK. Method: A reference population of 150 people with definite epilepsy and 150 people without epilepsy was ascertained from hospital records and linked to records contained within SAIL (containing GP records for 2.4 million people). We used three different algorithms, using combinations of GP epilepsy diagnosis and anti-epileptic drug (AED) prescription codes, to identify the reference population. Results: Combining diagnosis and AED prescription codes had a sensitivity of 84% (95% ci 77–90) and specificity of 98% (95–100) in identifying people with epilepsy; diagnosis codes alone had a sensitivity of 86% (80–91) and a specificity of 97% (92–99); and AED prescription codes alone achieved a sensitivity of 92% (70–83) and a specificity of 73% (65–80). Using AED codes only was more accurate in children achieving a sensitivity of 88% (75–95) and specificity of 98% (88–100). Conclusion: GP epilepsy diagnosis and AED prescription codes can be confidently used to identify people with epilepsy using anonymised healthcare records in Wales, U

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∌100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−ÂČÂł Hz at 100 Hz for the short-duration search and 1.1 ×10−ÂČÂČ Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−ÂČÂČ Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst ïŹ‚uences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available ïŹ‚uence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
    • 

    corecore