52 research outputs found

    Maternal immunometabolism adaptation in pregnancy

    Get PDF
    Pregnant women undergo a series of metabolic and immunologic changes to ensure provision of nutrients to, and prevent rejection of, the fetus. To ensure continuous supply of glucose to the fetus, the mother increases glucose production, glucose intolerance and insulin resistance. To meet her own energy demands, the mother transitions from lipid storage to lipolysis. To prevent rejection of the fetal semi-allograft, the mother’s immune system must be regulated, whilst maintaining protection against pathogens. Hypothesis: Well-recognised metabolic changes in pregnancy could impact maternal immune function. The aims of this project are to landscape the lipidomic profile using novel mass spectrometry techniques, and to determine whether monocytes undergo metabolic adaptation, if this occurs at 28 weeks of gestation, and if maternal obesity sabotages immunological adaptations. In addition, aims included investigation into the mechanisms which may protect the mother and fetus against SARS-CoV-2. Key findings unveiled significant phenotypic adaptations in the monocyte subsets during pregnancy, which are sabotaged by obesity. As the effect of maternal obesity is poorly understood, other immunological adaptations were investigated which revealed a shift to a Th1 and Th17 response which might contribute to the detrimental effects of obesity on pregnancy. At term, the monocytes illustrate a strong metabolic adaptation where their oxidative phosphorylation capabilities are reduced, confirmed by alterations in their mitochondria, with a downstream effect on their functionality with reduced production of lipid mediators and cytokines. While risk of infection with SARS-CoV-2 is low to pregnant women and the fetus, there is increased risk of preterm birth and admission into ICU. The fetus is relatively protected against infection, with cases of vertical transmission being rare. This thesis illustrates an elevated presence of soluble SARS-CoV-2 related molecules in breast milk and amniotic fluid which are postulated to act as decoy traps for the virus, which protects the neonate. In conclusion, this thesis has revealed novel findings into the immunometabolism adaptation to pregnancy

    Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy?

    Get PDF
    Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy

    Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity

    Get PDF
    Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity

    Immunometabolic adaptation in monocytes underpins functional changes during pregnancy.

    Get PDF
    Metabolic heterogeneity is a determinant of immune cell function. The normal physiological metabolic reprogramming of pregnancy that ensures the fuel requirements of mother and baby are met, might also underpin changes in immunity that occur with pregnancy and manifest as altered responses to pathogens and changes to autoimmune disease symptoms. Using peripheral blood from pregnant women at term, we reveal that monocytes lose M2-like and gain M1-like properties accompanied by reductions in mitochondrial mass, maximal respiration and cardiolipin content in pregnancy; glycolysis is unperturbed. We establish that muramyl dipeptide (MDP)-stimulated cytokine production relies on oxidative metabolism, then show in pregnancy reduced cytokine production in response to MDP but not LPS. Overall, mitochondrially centred metabolic capabilities of late gestation monocytes are downregulated revealing natural plasticity in monocyte phenotype and function that could reveal targets for improving pregnancy outcomes but also yield alternative therapeutic approaches to diverse metabolic and/or immune-mediated diseases beyond pregnancy

    Loss of mitochondrial pyruvate carrier 1 supports proline-dependent proliferation and collagen biosynthesis in ovarian cancer

    Get PDF
    The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC

    Production and regulation of interleukin-1 family cytokines at the materno-fetal interface

    Get PDF
    IL-1 family members regulate innate immune responses, are produced by gestation-associated tissues, and have a role in healthy and adverse pregnancy outcomes. To better understand their role at the materno-fetal interface we used a human tissue explant model to map lipopolysaccharide (LPS)-stimulated production of IL-1α, IL-1β, IL-18, IL-33, IL-1Ra, IL-18BPa, ST2 and IL-1RAcP by placenta, choriodecidua and amnion. Caspase-dependent processing of IL-1α, IL-1β, IL-18, and IL-33 and the ability of IL-1α, IL-1β, IL-18, and IL-33 to regulate the production of IL-1RA, IL-18BPa, ST2 and IL-1RAcP was also determined. LPS acted as a potent inducer of IL-1 family member expression especially in the placenta and choriodecidua with the response by the amnion restricted to IL-1β. Caspases-1, 4 and 8 contributed to LPS-stimulated production of IL-1 and IL-18, whereas calpain was required for IL-1 production. Exogenous administration of IL-1α, IL-1β, IL-18, and IL-33 lead to differential expression of IL-1Ra, IL-18BPa, ST2 and IL-1RAcP across all tissues examined. Most notable were the counter-regulatory effect of LPS on IL-1 and IL-1Ra in the amnion and the broad responsiveness of the amnion to IL-1 family cytokines for increased production of immunomodulatory peptides and soluble receptors. The placenta and membranes vary not only in their output of various IL-1 family members but also in their counter-regulatory mechanisms through endogenous inhibitory peptides, processing enzymes and soluble decoy receptors. This interactive network of inflammatory mediators likely contributes to innate defence mechanisms at the materno-fetal interface to limit, in particular, the detrimental effects of microbial invasion

    Columbus History from the River: Historical Narratives for WhiteWater Express River Guides

    Get PDF
    In 2013, the first year of urban whitewater rafting on the Chattahoochee River, WhiteWater Express guides introduced Columbus to over 15,000 rafting visitors. Over 90 percent of those visitors were from outside the local community. Understanding the importance of providing whitewater guides familiar with local history, Whitewater Express partnered with CSU’s Columbus Community Geography Center (CCGC). CCGC students in Dr. Rees’ Cultural Geography course at Columbus State University developed a semester project to create interpretive materials for the river guides and a new map of the river

    Distinct Pigmentary and Melanocortin 1 Receptor–Dependent Components of Cutaneous Defense against Ultraviolet Radiation

    Get PDF
    Genetic variation at the melanocortin 1 receptor (MC1R) is an important risk factor for developing ultraviolet (UV) radiation–induced skin cancer, the most common form of cancer in humans. The underlying mechanisms by which the MC1R defends against UV-induced skin cancer are not known. We used neonatal mouse skin (which, like human skin, contains a mixture of melanocytes and keratinocytes) to study how pigment cells and Mc1r genotype affect the genome-level response to UV radiation. Animals without viable melanocytes (Kit(W-v)/Kit(W-v)) or animals lacking a functional Mc1r (Mc1r(e)/Mc1r(e)) were exposed to sunburn-level doses of UVB radiation, and the patterns of large-scale gene expression in the basal epidermis were compared to each other and to nonmutant animals. Our analysis revealed discrete Kit- and Mc1r-dependent UVB transcriptional responses in the basal epidermis. The Kit-dependent UVB response was characterized largely by an enrichment of oxidative and endoplasmic reticulum stress genes, highlighting a distinctive role for pigmented melanocytes in mediating antioxidant defenses against genotoxic stresses within the basal epidermal environment. By contrast, the Mc1r-dependent UVB response contained an abundance of genes associated with regulating the cell cycle and oncogenesis. To test the clinical relevance of these observations, we analyzed publicly available data sets for primary melanoma and melanoma metastases and found that the set of genes specific for the Mc1r-dependent UVB response was able to differentiate between different clinical subtypes. Our analysis also revealed that the classes of genes induced by UVB differ from those repressed by UVB with regard to their biological functions, their overall number, and their size. The findings described here offer new insights into the transcriptional nature of the UV response in the skin and provide a molecular framework for the underlying mechanisms by which melanocytes and the Mc1r independently mediate and afford protection against UV radiation
    corecore