1,205 research outputs found

    Criminal Law: Customer’s Permanent Exclusion From Retail Store Due to Prior Shoplifting Arrests Held Enforceable Under Criminal Trespass Statute

    Get PDF
    In interpretive research, trustworthiness has developed to become an important alternative for measuring the value of research and its effects, as well as leading the way of providing for rigour in the research process. The article develops the argument that trustworthiness plays an important role in not only effecting change in a research project’s original setting, but also that trustworthy research contributes toward building a body of knowledge that can play an important role in societal change. An essential aspect in the development of this trustworthiness is its relationship to context. To deal with the multiplicity of meanings of context, we distinguish between contexts at different levels of the research project: the domains of the researcher, the collective, and the individual participant. Furthermore, we argue that depending on the primary purpose associated with the collective learning potential, critical potential, or performative potential of phenomenographic research, developing trustworthiness may take different forms and is related to aspects of pedagogical legitimacy, social legitimacy, and epistemological legitimacy. Trustworthiness in phenomenographic research is further analysed by distinguishing between the internal horizon – the constitution of trustworthiness as it takes place within the research project – and the external horizon, which points to the impact of the phenomenographic project in the world mediated by trustworthiness

    Probing the quantum vacuum with an artificial atom in front of a mirror

    Full text link
    Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a "mirror", creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum

    A Contributing Role for Anti-Neuraminidase Antibodies on Immunity to Pandemic H1N1 2009 Influenza A Virus

    Get PDF
    Exposure to contemporary seasonal influenza A viruses affords partial immunity to pandemic H1N1 2009 influenza A virus (pH1N1) infection. The impact of antibodies to the neuraminidase (NA) of seasonal influenza A viruses to cross-immunity against pH1N1 infection is unknown.Antibodies to the NA of different seasonal H1N1 influenza strains were tested for cross-reactivity against A/California/04/09 (pH1N1). A panel of reverse genetic (rg) recombinant viruses was generated containing 7 genes of the H1N1 influenza strain A/Puerto Rico/08/34 (PR8) and the NA gene of either the pandemic H1N1 2009 strain (pH1N1) or one of the following contemporary seasonal H1N1 strains: A/Solomon/03/06 (rg Solomon) or A/Brisbane/59/07 (rg Brisbane). Convalescent sera collected from mice infected with recombinant viruses were measured for cross-reactive antibodies to pH1N1 via Hemagglutinin Inhibition (HI) or Enzyme-Linked Immunosorbent Assay (ELISA). The ectodomain of a recombinant NA protein from the pH1N1 strain (pNA-ecto) was expressed, purified and used in ELISA to measure cross-reactive antibodies. Analysis of sera from elderly humans immunized with trivalent split-inactivated influenza (TIV) seasonal vaccines prior to 2009 revealed considerable cross-reactivity to pNA-ecto. High titers of cross-reactive antibodies were detected in mice inoculated with either rg Solomon or rg Brisbane. Convalescent sera from mice inoculated with recombinant viruses were used to immunize naïve recipient Balb/c mice by passive transfer prior to challenge with pH1N1. Mice receiving rg California sera were better protected than animals receiving rg Solomon or rg Brisbane sera.The NA of contemporary seasonal H1N1 influenza strains induces a cross-reactive antibody response to pH1N1 that correlates with reduced lethality from pH1N1 challenge, albeit less efficiently than anti-pH1N1 NA antibodies. These findings demonstrate that seasonal NA antibodies contribute to but are not sufficient for cross-reactive immunity to pH1N1

    Localization of nonlinear excitations in curved waveguides

    Full text link
    Motivated by the example of a curved waveguide embedded in a photonic crystal, we examine the effects of geometry in a ``quantum channel'' of parabolic form. We study the linear case and derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct numerical simulations of the nonlinear problem and localized excitations are found to persist, as well as to have interesting relaxational dynamics. Analogies of the present problem in contexts related to atomic physics and particularly to Bose-Einstein condensation are discussed.Comment: 14 pages, 4 figure

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.

    Repeated Quantum Error Detection in a Surface Code

    Full text link
    The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits can be redundantly encoded in a set of physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits, four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times in a 7-qubit surface code is an important step indicating a promising route towards the realization of quantum error correction in the surface code.Comment: 12 pages, 11 figure

    Intramanual and intermanual transfer of the curvature aftereffect

    Get PDF
    The existence and transfer of a haptic curvature aftereffect was investigated to obtain a greater insight into neural representation of shape. The haptic curvature aftereffect is the phenomenon whereby a flat surface is judged concave if the preceding touched stimulus was convex and vice versa. Single fingers were used to touch the subsequently presented stimuli. A substantial aftereffect was found when the adaptation surface and the test surface were touched by the same finger. Furthermore, a partial, but significant transfer of the aftereffect was demonstrated between fingers of the same hand and between fingers of both the hands. These results provide evidence that curvature information is not only represented at a level that is directly connected to the mechanoreceptors of individual fingers but is also represented at a stage in the somatosensory cortex shared by the fingers of both the hands

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    <b>Background</b> Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.<p></p> <b>Methods and findings</b> The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.<p></p> <b>Conclusions</b> Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems
    corecore