357 research outputs found

    Optical Properties of Materials for Optical Amplifiers at 1.3 µm

    Get PDF

    Optical Properties of Materials for Optical Amplifiers at 1.3 µm

    Get PDF

    Noncommutative waves have infinite propagation speed

    Full text link
    We prove the existence of global solutions to the Cauchy problem for noncommutative nonlinear wave equations in arbitrary even spatial dimensions where the noncommutativity is only in the spatial directions. We find that for existence there are no conditions on the degree of the nonlinearity provided the potential is positive. We furthermore prove that nonlinear noncommutative waves have infinite propagation speed, i.e., if the initial conditions at time 0 have a compact support then for any positive time the support of the solution can be arbitrarily large.Comment: 15 pages, references adde

    Optical Properties of Materials for Optical Amplifiers at 1.3 µm

    Get PDF

    Mining metrics for buried treasure

    Full text link
    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.Comment: 16 pages, no figures, minor grammatical changes, submitted to Proceedings of the Malcolm@60 Conference (London, July 2004

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Measurement of the parity-violating longitudinal single-spin asymmetry for W±W^{\pm} boson production in polarized proton-proton collisions at s=500\sqrt{s} = 500 GeV

    Get PDF
    We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from W+W^{+} and WW^{-} boson production in longitudinally polarized proton-proton collisions at s=500\sqrt{s}=500 GeV by the STAR experiment at RHIC. The measured asymmetries, ALW+=0.27±0.10  (stat.)±0.02  (syst.)±0.03  (norm.)A^{W^+}_{L}=-0.27\pm 0.10\;({\rm stat.})\pm 0.02\;({\rm syst.}) \pm 0.03\;({\rm norm.}) and ALW=0.14±0.19  (stat.)±0.02  (syst.)±0.01  (norm.)A^{W^-}_{L}=0.14\pm 0.19\;({\rm stat.})\pm 0.02 \;({\rm syst.})\pm 0.01\;({\rm norm.}), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.Comment: 6 pages, 4 figures, submitted to Physics Review Letter

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore