758 research outputs found

    Decay of Quantum Accelerator Modes

    Full text link
    Experimentally observable Quantum Accelerator Modes are used as a test case for the study of some general aspects of quantum decay from classical stable islands immersed in a chaotic sea. The modes are shown to correspond to metastable states, analogous to the Wannier-Stark resonances. Different regimes of tunneling, marked by different quantitative dependence of the lifetimes on 1/hbar, are identified, depending on the resolution of KAM substructures that is achieved on the scale of hbar. The theory of Resonance Assisted Tunneling introduced by Brodier, Schlagheck, and Ullmo [9], is revisited, and found to well describe decay whenever applicable.Comment: 16 pages, 11 encapsulated postscript figures (figures with a better resolution are available upon request to the authors); added reference for section

    Mechanical properties of α-tricalcium phosphate-based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads

    Get PDF
    Calcium phosphate-based cements with enhanced regenerative potential are promising biomaterials for the healing of bone defects. With a view to the use of such cements for low load bearing applications such as sinus augmentation or filling extraction sites, we have prepared α-tricalcium phosphate (α-TCP)-based bone cements including materials that we would expect to improve their regenerative potential, and describe the mechanical properities of the resulting formulations herein. Formulations incorporated α-TCP, hydroxyapatite, biopolymer-thickened wetting agents, sutures, and platelet poor plasma. The mechanical properties of the composites were composition dependent, and optimized formulations had clinically relevant mechanical properties. Such calcium phosphate-based cements have potential as replacements for cements such as those based on polymethylmethacrylate (PMMA)

    Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin

    Get PDF
    Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair

    Get PDF
    Ionizing radiation (IR) and chemotherapy are standard of care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240FPten knock-in mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy

    Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii

    Get PDF
    We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8(+) T cell-eliciting epitopes, a universal CD4(+) helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8(+) T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8(+) T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis

    Genetic Diversity Enhances Restoration Success by Augmenting Ecosystem Services

    Get PDF
    Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actual large-scale seagrass restoration projects and demonstrated that a small increase in genetic diversity enhanced ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). In our experiment, plots with elevated genetic diversity had plants that survived longer, increased in density more quickly, and provided more ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). We used the number of alleles per locus as a measure of genetic diversity, which, unlike clonal diversity used in earlier research, can be applied to any organism. Additionally, unlike previous studies where positive impacts of diversity occurred only after a large disturbance, this study assessed the importance of diversity in response to potential environmental stresses (high temperature, low light) along a water–depth gradient. We found a positive impact of diversity along the entire depth gradient. Taken together, these results suggest that ecosystem restoration will significantly benefit from obtaining sources (transplants or seeds) with high genetic diversity and from restoration techniques that can maintain that genetic diversity
    • …
    corecore