11 research outputs found

    Q-switched thulium/holmium fiber laser with gallium selenide

    No full text
    A passively Q-switched thulium/holmium fiber laser with a gallium selenide (GaSe) saturable absorber (SA) is proposed and demonstrated for the first time. The GaSe based SA is prepared by mechanical exfoliation and inserted into the proposed laser cavity to generate Q-switched pulses. Stable Q-switching operation is achieved at 1986.0 nm, with output pulse repetition rates ranging from 22.9 kHz to 32.3 kHz over a pump power range of 112.0 mW to 235.0 mW. The generated Q-switched pulses have a maximum pulse energy of 120.3 nJ and minimum pulse width of 6.9 μs. The proposed thulium/holmium fiber laser with GaSe SA will be able to cater to multiple applications requiring pulsed laser outputs in the 2.0 μm regio

    Silver nanoparticle-film based saturable absorber for passivelyQ-switched erbium-doped fiber laser (EDFL) in ring cavity configuration

    No full text
    We report a passive Q-switched erbium-doped fiber laser based on silver (Ag) nanoparticle thin-film saturable absorber (SA). The thin film was sandwiched between two fiber ferrules, which offer flexibility and easy integration into the ring cavity. Self-started and stable Q-switching is achieved at a central wavelength of 1558.7 nm; within the C-band region. The repetition rate and pulse duration shows a typical Q-switched laser profile as we increase the pump power; the repetition rate increases from 19.471-74.074 kHz while pulse duration decreases from 8.88-3.2 μs. A signal-to-noise ratio value of 35 dB was obtained at 100 mW pump power. By using a balanced twin-detector method, the modulation depth and saturation intensity of the Ag nanoparticle thin film were measured to be 31.6% and 0.54 MW cm-2 respectively. This result offers another alternative to the existing SA materials

    Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber

    No full text
    Nanomaterials have ignited new interest due to their distinctive electronic, mechanical, and optical properties. Zinc oxide nanostructures are fabricated into thin film and then inserted between two fiber ferrules to act as a saturable absorber (SA). The modulation depth and insertion loss of the SA are 5% and 3.5 dB, respectively. When the ZnO-SA is incorporated into the laser cavity, a stable Q-switched pulse tunable from 1536 to 1586 nm (50 nm range) with pulse energy up to 46 nJ was observed. Our result suggests that ZnO is a promising broadband SA to generate passively Q-switched fiber lasers

    Ag-nanoparticle as a Q switched device for tunable C-band fiber laser

    No full text
    The use of silver (Ag)-nanoparticle as saturable absorber (SA) to induce tunable Q-switched fiber laser in C-band is demonstrated. The Ag-nanoparticle SA exhibits modulation depth of 31.6% and saturation intensity of 0.54 MW cm−2. The SA is integrated into the laser cavity by sandwiching it between two fiber ferrules. Lasing in CW region starts at 10 mW, whereas stable self-starting Q-switching with a central wavelength of 1558.4 nm begins at 20 mW. As the pump power increases, the repetition rate varies from 10.5 kHz to 24.4 kHz and the narrowest pulse width obtained is around 6.5 µs. The Q-switched laser has a tuning range of 27.3 nm (1552.9–1580.2 nm). The stability of the pulse is verified from the radio-freqeuncy (RF) spectrum with a measured signal-to-noise ratio (SNR) of 46.22 dB. The ability of Ag-nanoparticle as an effective SA may lead to further development of pulsed fiber laser in the field of photonics

    Passively Q-switched erbium-doped fiber laser at C-band region based on WS_2 saturable absorber

    No full text
    We demonstrate a Q-switched erbium-doped fiber laser using tungsten disulfide (WS2) as a saturable absorber. The WS2 is deposited onto fiber ferrules using a drop-casting method. Passive Q-switched pulses operating in the C-band region with a central wavelength of 1560.7 nm are successfully generated by a tunable pulse repetition rate ranging from 27.2 to 84.8 kHz when pump power is increased from 40 to 220 mW. At the same time, the pulse width decreases from a maximum value of 3.84 μs to a minimum value of 1.44 μs. The signal-to-noise ratio gives a stable value of 43.7 dB. The modulation depth and saturation intensity are measured to be 0.99% and 36.2 MW/cm2, respectively

    Zinc oxide (ZnO) nanoparticles as saturable absorber in passively Q-switched fiber laser

    No full text
    We demonstrate a passively Q-switched erbium-doped fiber laser using zinc oxide (ZnO) nanoparticles thin film as saturable absorber (SA). ZnO exhibits high nonlinear optical response and fast recovery time, fulfilling the requirements of an ideal SA. The nonlinear optical absorption is characterised by modulation depth of 3.5% with saturation intensity of 0.016 MW cm−2. We insert the SA into the laser cavity and obtain stable Q-switched pulse whereby the repetition rate increases from 41.7 kHz to 77.2 kHz while the pulse width decreases from 9.6 μs to 3.0 μs as the pump power is increased from 60 mW to 360 mW. This result suggests that ZnO could be a promising SA for photonic applications

    Surface-mounted tilt sensor using fiber Bragg grating technology for engineered slope monitoring with temperature compensation

    No full text
    A surface-mounted tilt sensor was designed and fabricated to measure the inclination angle of engineered structures or slopes in two directions. The device utilizes two strain-sensitive fiber Bragg gratings (FBGs) for tilt angle measurement bidirectionally and one strain-free FBG to provide temperature compensation. In this work, a tilt sensor prototype was fabricated using a 3-D printer, with a robust enclosure and a miniature actuator with dimensions of 115 × 65 × 30 mm and 45 × 20 × 3 mm, respectively. The device was first calibrated in the laboratory for tilt and temperature parameters. For tilt calibration, the device yields a sensitivity value of 0.0135 and 0.0123 nm/° for + x- and- x -directions. On the other hand, the device delivers a sensitivity value of 0.0105 nm/°C as the response to temperature changes. The tilt sensor was also tested for suitability in a real-field deployment where it was installed on a retaining wall and was left for four weeks. The field test data indicate no vertical displacement of the wall since the device exhibits zero inclination changes during the test period. This compact, robust, and easy-to-install tilt sensor has excellent potential for various geotechnical applications, mainly in landslide detections, ground movement, and engineered slope monitoring.</p
    corecore