130 research outputs found

    Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-<it>trans </it>retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells.</p> <p>Methods</p> <p>Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes.</p> <p>Results</p> <p>Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines.</p> <p>Conclusions</p> <p>Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.</p

    Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no standard serum biomarker used for diagnosis or early detection of recurrence for renal cell carcinoma (RCC) patients. MicroRNAs (miRNAs) are abundant and highly stable in blood serum, and have been recently described as powerful circulating biomarkers in a wide range of solid cancers. Our aim was to identify miRNA signature that can distinguish the blood serum of RCC patients and matched healthy controls and validate identified miRNAs as potential biomarkers for RCC.</p> <p>Methods</p> <p>In the screening phase of the study, blood serum of 15 RCC patients and 12 matched healthy controls were analyzed by use of the TaqMan Low-Density Arrays enabling parallel identification of expression levels of 667 miRNAs through qRT-PCR-based approach. In the validation phase, identified miRNAs were further evaluated on the independent group of 90 RCC patients and 35 matched healthy controls by use of individual qRT-PCR assays and statistically evaluated.</p> <p>Results</p> <p>We identified 30 miRNAs differentially expressed between serum of RCC patients and healthy controls: 19 miRNAs were up-regulated and 11 miRNAs were down-regulated in RCC patients. MiR-378, miR-451 and miR-150 were further evaluated in the independent group of patients, and two of them were successfully validated: levels of miR-378 were increased (p = 0.0003, AUC = 0.71), miR-451 levels were decreased (p < 0.0001, AUC = 0.77) in serum of RCC patients. Combination of miR-378 and miR-451 enable identification of RCC serum with the sensitivity of 81%, specificity 83% and AUC = 0.86.</p> <p>Conclusions</p> <p>Circulating miRNAs in serum are promising biomarkers in RCC.</p

    Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube.

    Get PDF
    INTRODUCTION: Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. MATERIALS AND METHODS: We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. RESULTS: Agitation and storage of blood samples at 37 degrees C for 1hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. CONCLUSIONS: We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses

    An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects.

    Get PDF
    In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects.Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease

    MiR-34b is associated with clinical outcome in triple-negative breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is the most common malignancy with the highest incidence rates among women worldwide. Triple-negative breast cancer (TNBC) represents the major phenotype of basal-like molecular subtype of breast cancer, characterized by higher incidence in young women and a very poor prognosis. MicroRNAs (miRNAs) are small non-coding RNAs playing significant role in the pathogenesis of many cancers including breast cancer. Therefore, miRNAs are also potential prognostic and/or predictive biomarkers in triple-negative breast cancer patients.</p> <p>Methods</p> <p>Thirty-nine TNBC patients with available formalin-fixed paraffin-embedded (FFPE) tissues were enrolled in the study. MiR-34a, miR-34b, and miR-34c were analyzed using qRT-PCR and correlated to clinico-pathological features of TNBC patients.</p> <p>Results</p> <p>Expression levels of miR-34b significantly correlate with disease free survival (DFS) (<it>p </it>= 0.0020, log-rank test) and overall survival (OS) (<it>p </it>= 0.0008, log-rank test) of TNBC patients. No other significant associations between miR-34a, miR-34b, and miR-34c with available clinical pathological data were observed.</p> <p>Conclusions</p> <p>MiR-34b expression negatively correlates with disease free survival and overall survival in TNBC patients. Thus, miR-34b may present a new promising prognostic biomarker in TNBC patients, but independent validations are necessary.</p

    miR-210: fine-tuning the hypoxic response

    Get PDF
    Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia

    miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs

    Get PDF
    INTRODUCTION: Breast cancer is a genetically and phenotypically complex disease. To understand the role of miRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer cell lines to identify miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations. METHODS: Using a microarray carrying LNA™ modified oligonucleotide capture probes), expression levels of 725 human miRNAs were measured in 51 breast cancer cell lines. Differential miRNA expression was explored by unsupervised cluster analysis and was then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. RESULTS: Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 breast cancer cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of breast cancer cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group, 39 miRNAs were associated with ERBB2 overexpression and 24 with E-cadherin gene mutations, which are frequent in this subtype of breast cancer cell lines. In contrast, 31 miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in breast cancer cell lines that are not of luminal origin. Thirty miRNAs were associated with p16(INK4 )status while only a few miRNAs were associated with BRCA1, PIK3CA/PTEN and TP53 mutation status. Twelve miRNAs were associated with DNA copy number variation of the respective locus. CONCLUSION: Luminal-basal and epithelial-mesenchymal associated miRNAs determine the subdivision of miRNA transcriptome of breast cancer cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16(INK4a )or E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of these genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of breast cancer cell lines, which can be exploited for functional studies of clinically important miRNAs
    corecore