85 research outputs found

    Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner

    Get PDF
    Streambank erosion is diffcult to quantify; models and field methods are needed to assess this important sediment source to streams. Our objectives were to (1) evaluate and compare three techniques for quantifying streambank erosion: erosion pins, total station, and laser scanning, (2) spatially assess streambank erosion rates in the Indian Mill Creek watershed of Michigan, USA, and (3) relate results with modeling of nonpoint source pollution. We found large absolute and relative errors between the different measurement techniques. However, we were unable to determine any statistically significant differences between techniques and only observed a correlation between total station and laser scanner. This suggests that the three methods have limited comparability and differences between measurements were largely not systemic. Further, the application of each technique should be dependent on site conditions, project goals, desired resolution, and resources. The laser scanner collected high-resolution data on clear, barren streambanks, but the erosion pin and total station were more representative of complex vegetated banks. Streambank erosion rates varied throughout the watershed and were influenced by fluvial processes. We estimate that streambank erosion contributed 28.5% of the creek’s total sediment load. These findings are important to address sources of watershed impairments related to sedimentation, as choosing an applicable technique for individual purposes can help reduce the challenges and costs of a streambank erosion study

    Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence

    Get PDF
    AbstractObjective We have demonstrated in bovine chondrocytes that nitric oxide (NO) mediates IL1 dependent apoptosis under conditions of oxidant stress. This process is accompanied by activation of c-Jun NH2-terminal kinase (JNK; also called stress-activated protein kinase). In these studies we examined activation of JNK in explant cultures of human osteoarthritic cartilage obtained at joint replacement surgery and we characterized the role of peroxynitrite to act as an upstream trigger.Design A novel technique to isolate chondrocyte proteins (<10% of total cartilage protein) from cartilage specimens was developed. It was used to analyse JNK activation by a western blot technique. To examine the hypothesis that chondrocyte JNK activation is a result of increased peroxynitrite, in vitro experiments were performed in which cultured chondrocytes were incubated with this oxidant.Results Activated JNK was detected in the cytoplasm of osteoarthritis (OA) affected chondrocytes but not in that of controls. In vitro, chondrocytes produce NO and superoxide anion. IL-1 (48h), which induces nitric oxide synthase, resulted in an activation of JNK; this effect was reversed by N-monomethylarginine (NMA). TNFα treated chondrocytes at 48h produce superoxide anion (EPR method). Exposure of cells to peroxynitrite led to an accumulation of intracellular oxidants, in association with JNK activation and cell death by apoptosis.Conclusion We suggest that JNK activation is among the IL-1 elicited responses that injure articular chondrocytes and this activation of JNK is dependent on intracellular oxidant formation (including NO peroxynitrite). In addition, the extraction technique here described is a novel method that permits the quantitation and study of proteins such as JNK involved in the signaling pathways of chondrocytes within osteoarthritic cartilage

    Sex differences in contaminant concentrations of fish: a synthesis

    Full text link
    Abstract A comparison of whole-fish polychlorinated biphenyl (PCB) and total mercury (Hg) concentrations in mature males with those in mature females may provide insights into sex differences in behavior, metabolism, and other physiological processes. In eight species of fish, we observed that males exceeded females in whole-fish PCB concentration by 17 to 43 %. Based on results from hypothesis testing, we concluded that these sex differences were most likely primarily driven by a higher rate of energy expenditure, stemming from higher resting metabolic rate (or standard metabolic rate (SMR)) and higher swimming activity, in males compared with females. A higher rate of energy expenditure led to a higher rate of food consumption, which, in turn, resulted in a higher rate of PCB accumulation. For two fish species, the growth dilution effect also made a substantial contribution to the sex difference in PCB concentrations, although the higher energy expenditure rate for males was still the primary driver. Hg concentration data were available for five of the eight species. For four of these five species, the ratio of PCB concentration in males to PCB concentration in females was substantially greater than the ratio of Hg concentration in males to Hg concentration in females. In sea lamprey (Petromyzon marinus), a very primitive fish, the two ratios were nearly identical. The most plausible explanation for this pattern was that certain androgens, such as testosterone and 11-ketotestosterone, enhanced Hg-elimination rate in males. In contrast, long-term elimination of PCBs is negligible for both sexes. According to this explanation, males not only ingest Hg at a higher rate than females but also eliminate Hg at a higher rate than females, in fish species other than sea lamprey. Male sea lamprey do not possess either of the above-specified androgens. These apparent sex differences in SMRs, activities, and Hg-elimination rates in teleost fishes may also apply, to some degree, to higher vertebrates including humans. Our synthesis findings will be useful in (1) developing sex-specific bioenergetics models for fish, (2) developing sex-specific risk assessment models for exposure of humans and wildlife to contaminants, and (3) refining Hg mass balance models for fish and higher vertebrates.http://deepblue.lib.umich.edu/bitstream/2027.42/134637/1/13293_2016_Article_90.pd

    Contaminant biotransport by Pacific salmon to Lake Michigan tributaries

    Get PDF
    The Great Lakes are ideal systems for evaluating the synergistic components of environmental change, such as exotic species introductions and legacy pollutants. Introduced Pacific Salmon (Oncorhynchus spp.) represent an intersection of these drivers because they are non-native species of economic importance that bioaccumulate contaminants during the open water phase of their life cycle. Furthermore, Pacific salmon can deliver a significant pulse of contaminated tissue to tributaries during spawning and subsequent death. Thus, salmon represent a key pathway by which contaminants accumulated in Lake Michigan are transported inland to tributaries that otherwise lack point source pollution. Our research has revealed that salmon exhibit basin-specific persistent organic pollutant (POP) and mercury (Hg) concentrations reflecting pollutant inputs from both current and historic sources. Overall, Lake Michigan salmon were more contaminated with POPs and Hg than conspecifics from Lakes Huron or Superior. Consequently, Lake Michigan salmon pose a higher risk and magnitude of contaminant biotransport and transfer. Resident stream fish (e.g., brook trout) sampled from salmon spawning reaches had higher pollutant concentrations than fish sampled from upstream reaches lacking salmon, but the extent of fish contamination varied among lake basins and streams. In general, Lake Michigan tributaries were the most impacted, suggesting a direct relationship between the extent of salmon-derived contaminant inputs and resident fish contaminant levels. Within and among lake basins, contaminant biotransport by salmon is context dependent and likely reflects a suite of ecological characteristics such as species identity and trophic position, dynamics of the salmon run, watershed land-use, and instream geomorphology such as sediment size. We suggest that future management of salmon-mediated contaminant biotransport to stream communities in the Great Lakes basin should consider biological, chemical, and physical factors that constitute the environmental context

    Contaminant biotransport by Pacific Salmon in Lake Michigan: analysis of salmon and stream-resident fish in Great Lakes tributaries

    Get PDF
    Pacific salmon (Oncorhynchus spp.) can deliver a significant pulse of biomass, including its bioaccumulated contaminants, to tributaries during spawning runs. Thus, salmon transport contaminants accumulated in the Great Lakes (e.g., persistent organic pollutants [POPs], total mercury [THg]) to tributaries that otherwise lack point source pollution. We used a combination of observational surveys, experimental manipulations, and modeling, to (1) assess the extent of salmon-mediated biotransport across the upper Great Lakes; (2) determine pathways by which stream fish become contaminated by salmon; and (3) forecast areas at significant risk from salmon biotransport. Resident stream fish (e.g., brook trout Salvelinus fontinalis) in salmon spawning reaches had higher POP concentrations than fish in upstream reaches lacking salmon, but the extent of contamination varied among lake basins and streams. In contrast, THg concentrations in the same fish did not differ between reaches with and without salmon spawners but exhibited considerable among-site variability. In general, resident fish in Lake Michigan tributaries were the most contaminated by POPs, suggesting a direct relationship between salmon-derived contaminant inputs and resident fish contaminant levels. Experimental exposure to salmon carcasses and eggs for 50 days increased brook trout POP concentrations by 50 times. Eggs are elevated in POPs but depleted in THg compared to whole salmon, suggesting that resident fish contaminant levels reflect direct consumption of eggs rather than indirect food web pathways. Our model suggests that salmon-mediated bioaccumulation is primarily influenced by the size and duration of salmon runs, and secondarily by factors including individual consumption rates, temperature regime, and background pollutant levels. Overall, our research provides increased understanding on the physical, chemical, and biological controls of salmon contaminant biotransport in the Great Lakes region. This research will help inform management decisions in this region with respect to legacy pollution, dam removal, stream connectivity, fish stocking, and non-native species in stream ecosystems

    Oil and PCB interactions on the uptake and excretion in midges

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47989/1/128_2005_Article_BF01625535.pd

    Environmental context and contaminant biotransport by Pacific salmon interact to mediate the bioaccumulation of contaminants by stream-resident fish

    Get PDF
    1. The extent to which environmental context mediates the uptake of biotransported contaminants by stream-resident organisms is not understood. For example, there is no clear understanding of the extent to which contaminant type, instream characteristics, or resident fish identity interact to influence the uptake of contaminants deposited by Pacific salmon (Oncorhynchus spp.) during their spawning runs. 2. To address this uncertainty, we sampled four stream-resident fish species from 13 watersheds of the Laurentian Great Lakes in locations with and without salmon across a gradient of instream and watershed characteristics. We determined the polychlorinated biphenyl (PCB) and mercury (Hg) concentration along with the stable isotope ratio of C and N for each stream-resident fish. 3. We found that stream-resident fish PCB concentrations were 24-fold higher in reaches with salmon and were positively related to δ15N. In contrast, stream-resident fish Hg concentrations were similar or lower in reaches with salmon and either exhibited a negative or no relationship with δ15N. 4. Based upon AICc, stream-resident fish exhibited species-specific PCB concentrations that were positively related to salmon PCB flux. Hg burdens exhibited an interaction between fish length and salmon Hg flux – as salmon Hg inputs increased, Hg levels decreased with increasing resident fish length. We found no support for models that included the mediating influence of instream or watershed factors. Salmon eggs are enriched in PCBs but have very low Hg concentrations, so our results may be driven by the consumption of salmon eggs by stream-resident fish. 5. Synthesis and applications. Our results highlight that contaminants bioaccumulate differently depending on contaminant type, species identity, and the trophic pathway to contamination. Consequently, consideration of the recipient food web and route of exposure is critical to understanding the fate of biotransported contaminants in ecosystems. The transfer of contaminants by migratory organisms represents an understudied stressor in ecology. Effective management of biotransported contaminants will require the delineation of “hot-spots” of biotransport and implementation of best management practices in those watersheds that receive contaminants from spawning salmon

    Evaluation of multiple laboratory performance and variability in analysis of recreational freshwaters by a rapid Escherichia coli qPCR method (Draft Method C)

    Get PDF
    There is interest in the application of rapid quantitative polymerase chain reaction (qPCR) methods for recreational freshwater quality monitoring of the fecal indicator bacteria Escherichia coli (E. coli). In this study we determined the performance of 21 laboratories in meeting proposed, standardized data quality acceptance (QA) criteria and the variability of target gene copy estimates from these laboratories in analyses of 18 shared surface water samples by a draft qPCR method developed by the U.S. Environmental Protection Agency (EPA) for E. coli. The participating laboratories ranged from academic and government laboratories with more extensive qPCR experience to “new” water quality and public health laboratories with relatively little previous experience in most cases. Failures to meet QA criteria for the method were observed in 24% of the total 376 test sample analyses. Of these failures, 39% came from two of the “new” laboratories. Likely factors contributing to QA failures included deviations in recommended procedures for the storage and preparation of reference and control materials. A master standard curve calibration model was also found to give lower overall variability in log10 target gene copy estimates than the delta-delta Ct (ΔΔCt) calibration model used in previous EPA qPCR methods. However, differences between the mean estimates from the two models were not significant and variability between laboratories was the greatest contributor to overall method variability in either case. Study findings demonstrate the technical feasibility of multiple laboratories implementing this or other qPCR water quality monitoring methods with similar data quality acceptance criteria but suggest that additional practice and/or assistance may be valuable, even for some more generally experienced qPCR laboratories. Special attention should be placed on providing and following explicit guidance on the preparation, storage and handling of reference and control materials

    Standardized data quality acceptance criteria for a rapid Escherichia coli qPCR method (Draft Method C) for water quality monitoring at recreational beaches

    Get PDF
    There is growing interest in the application of rapid quantitative polymerase chain reaction (qPCR) and other PCR-based methods for recreational water quality monitoring and management programs. This interest has strengthened given the publication of U.S. Environmental Protection Agency (EPA)-validated qPCR methods for enterococci fecal indicator bacteria (FIB) and has extended to similar methods for Escherichia coli (E. coli) FIB. Implementation of qPCR-based methods in monitoring programs can be facilitated by confidence in the quality of the data produced by these methods. Data quality can be determined through the establishment of a series of specifications that should reflect good laboratory practice. Ideally, these specifications will also account for the typical variability of data coming from multiple users of the method. This study developed proposed standardized data quality acceptance criteria that were established for important calibration model parameters and/or controls from a new qPCR method for E. coli (EPA Draft Method C) based upon data that was generated by 21 laboratories. Each laboratory followed a standardized protocol utilizing the same prescribed reagents and reference and control materials. After removal of outliers, statistical modeling based on a hierarchical Bayesian method was used to establish metrics for assay standard curve slope, intercept and lower limit of quantification that included between-laboratory, replicate testing within laboratory, and random error variability. A nested analysis of variance (ANOVA) was used to establish metrics for calibrator/positive control, negative control, and replicate sample analysis data. These data acceptance criteria should help those who may evaluate the technical quality of future findings from the method, as well as those who might use the method in the future. Furthermore, these benchmarks and the approaches described for determining them may be helpful to method users seeking to establish comparable laboratory-specific criteria if changes in the reference and/or control materials must be made

    Effect of nitric oxide on mitochondrial activity of human synovial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) is a messenger implicated in the destruction and inflammation of joint tissues. Cartilage and synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) have high levels of NO. NO is known to modulate various cellular pathways and, thus, inhibit the activity of the mitochondrial respiratory chain (MRC) of chondrocytes and induce the generation of reactive oxygen species (ROS) and cell death in multiple cell types. For these reasons, and because of the importance of the synovial membrane in development of OA pathology, we investigated the effects of NO on survival, mitochondrial function, and activity of fibroblastic human OA synovial cells.</p> <p>Methods</p> <p>Human OA synovia were obtained from eight patients undergoing hip joint replacement. Sodium nitroprusside (SNP) was used as a NO donor compound and cell viability was evaluated by MTT assays. Mitochondrial function was evaluated by analyzing the mitochondrial membrane potential (Δψm) with flow cytometry using the fluorofore DePsipher. ATP levels were measured by luminescence assays, and the activities of the respiratory chain complexes (complex I: NADH CoQ<sub>1 </sub>reductase, complex II: succinate dehydrogenase, complex III: ubiquinol-cytochrome c reductase, complex IV: cytochrome c oxidase) and citrate synthase (CS) were measured by enzymatic assay. Protein expression analyses were performed by western blot.</p> <p>Results</p> <p>SNP at a concentration of 0.5 mM induced cell death, shown by the MTT method at different time points. The percentages of viable cells at 24, 48 and 72 hours were 86.11 ± 4.9%, 74.31 ± 3.35%, and 43.88 ± 1.43%, respectively, compared to the basal level of 100% (*<it>p </it>< 0.05). SNP at 0.5 mM induced depolarization of the mitochondrial membrane at 12 hours with a decrease in the ratio of polarized cells (basal = 2.48 ± 0.28; SNP 0.5 mM = 1.57 ± 0.11; *<it>p </it>< 0.01). The time course analyses of treatment with SNP at 0.5 mM demonstrated that treatment reliably and significantly reduced intracellular ATP production (68.34 ± 14.3% vs. basal = 100% at 6 hours; *<it>p </it>< 0.05). The analysis of the MRC at 48 hours showed that SNP at 0.5 mM increased the activity of complexes I (basal = 36.47 ± 3.92 mol/min/mg protein, SNP 0.5 mM = 58.08 ± 6.46 mol/min/mg protein; *<it>p </it>< 0.05) and III (basal = 63.87 ± 6.93 mol/min/mg protein, SNP 0.5 mM = 109.15 ± 30.37 mol/min/mg protein; *<it>p </it>< 0.05) but reduced CS activity (basal = 105.06 ± 10.72 mol/min/mg protein, SNP at 0.5 mM = 66.88 ± 6.08 mol/min/mg protein.; *<it>p </it>< 0.05), indicating a decrease in mitochondrial mass. Finally, SNP regulated the expression of proteins related to the cellular cycle; the NO donor decreased bcl-2, mcl-1 and procaspase-3 protein expression.</p> <p>Conclusions</p> <p>This study suggests that NO reduces the survival of OA synoviocytes by regulating mitochondrial functionality, as well as the proteins controlling the cell cycle.</p
    corecore