8 research outputs found

    A hybrid Delphi-AHP multi-criteria analysis of Moving Block and Virtual Coupling railway signalling

    Get PDF
    The railway industry needs to investigate overall impacts of next generation signalling systems such as Moving Block (MB) and Virtual Coupling (VC) to identify development strategies to face the forecasted railway demand growth. To this aim an innovative multi-criteria analysis (MCA) framework is introduced to analyse and compare VC and MB in terms of relevant criteria including quantitative (e.g. costs, capacity, stability, energy) and qualitative ones (e.g. safety, regulatory approval). We use a hybrid Delphi-Analytic Hierarchic Process (AHP) technique to objectively select, combine and weight the different criteria to more reliable MCA outcomes. The analysis has been performed for different rail market segments including high-speed, mainline, regional, urban and freight corridors. The results show that there is a highly different technological maturity level between MB and VC given the larger number of vital issues not yet solved for VC. The MCA also indicates that VC could outperform MB for all market segments if it reaches a comparable maturity and safety level. The provided analysis can effectively support the railway industry in strategic investment planning of VC

    A hybrid Delphi-AHP multi-criteria analysis of Moving Block and Virtual Coupling railway signalling

    Get PDF
    The railway industry needs to investigate overall impacts of next generation signalling systems such as Moving Block (MB) and Virtual Coupling (VC) to identify development strategies to face the forecasted railway demand growth. To this aim an innovative multi-criteria analysis (MCA) framework is introduced to analyse and compare VC and MB in terms of relevant criteria including quantitative (e.g. costs, capacity, stability, energy) and qualitative ones (e.g. safety, regulatory approval). We use a hybrid Delphi-Analytic Hierarchic Process (AHP) technique to objectively select, combine and weight the different criteria to more reliable MCA outcomes. The analysis has been performed for different rail market segments including high-speed, mainline, regional, urban and freight corridors. The results show that there is a highly different technological maturity level between MB and VC given the larger number of vital issues not yet solved for VC. The MCA also indicates that VC could outperform MB for all market segments if it reaches a comparable maturity and safety level. The provided analysis can effectively support the railway industry in strategic investment planning of VC.Transport and Plannin

    Application Roadmap for the Introduction of Virtual Coupling

    No full text
    This document constitutes MOVINGRAIL Deliverable D4.3 ā€˜Application Roadmap for the Introduction of Virtual Couplingā€™ in the framework of TD2.8 of IP2 according to the Shift2Rail MultiAnnual Action plan (MAAP). This deliverable moves forward the current state of the railways by developing a long-term strategy that will enable a smooth, gradual transition towards the implementation of Virtual Coupling for various market segments.The scope of Virtual Coupling is analysed together with the impact on the technical and operational railway system components of interlocking, communication structures, automatic train protection, automatic train operation, railway traffic planning, and railway traffic management. For each of these components main research and development challenges are derived providing an overview of knowledge gaps and critical step-changes for the developmentof Virtual Coupling. A clear distinction must be made between VCTS train protection and cooperative train operation, similar to ATP and ATO but then for virtual-coupled trains. A convoy or VCTS is a vital safety system concept that allows virtual-coupled trains to follow each other up to relative braking distances. A convoy can additionally form a platoon, which is a non-vital multitrain control concept that enables (virtually-coupled) trains to move synchronously and stabletogether. The cooperative train operation system guarantees stable operation in a platoon, while the VCTS train protection system supervises the relative braking distances.A Swimlane roadmap is developed to group step-changes into different themes and categories. This is achieved by means of a quantitative-qualitative gap analysis between current and future states in the operational, technological and business domains. A survey was distributed to stakeholders to collect priorities and time orders for each of the defined steps within the Swimlane roadmap. Optimistic and pessimistic scenarios are defined for each market segment using the SWOT analysis from MOVINGRAIL D4.1 and the cost-effectiveness analysis from MOVINGRAIL D4.2. Optimistic scenarios are based on the estimates made in the ā€˜White Paper on Transportā€™ of the European Commission (EC) regarding travel demand and CO2 emissions. Pessimistic scenarios consider a lower growth in the railway demand as well as a higher increase in CO2 emissions and capital and operational costs when compared to the optimistic scenarios (specifically a 50% less increase in rail demand and 50% more increase in CO2 emissions and costs).Scenario-based roadmaps are developed to fulfil the ECā€™s vision of a more competitive, capacity effective and sustainable railway by 2050. This deliverable is based on the assumption that the strategic goals set by the EC in terms of railway demand, capacity and emissions could be met if Virtual Coupling (VC) operations will be implemented within the target year 2050. Results show that all the considered scenarios and railway market segments could achieve the timelydeployment of Virtual Coupling except in the pessimistic scenario for mainline railways where VC could be deployed not earlier than 2054. Critical issues are here the longitudinal motion control systems of the Virtually Coupled Train Sets and the integrated traffic management and cooperative train operation complexity for heterogeneous trains. These scenario-based roadmaps can be used as an efficient tool for stakeholders to identify and solve potential criticalities/risks to the deployment of Virtual Coupling as well as to plan necessary investment/development actions. The developed roadmaps provide a long-term transition strategy defining for each rail market segment a sequence of progressive upgrades to connected and automated railways that will eventually lead to the deployment of Virtual Coupling and enable a significant increase in infrastructure capacity and operation efficiency.Transport and Plannin

    Cost-Effectiveness Analysis for Virtual Coupling

    No full text
    The present document constitutes Deliverable D4.2 ā€œCost-Effectiveness Analysis for Virtual Couplingā€ in the framework of TD2.8 of IP2 according to the Shift2Rail Multi-Annual Action plan (MAAP). This deliverable introduces a Multi-Criteria Analysis framework for assessing impacts of train-centric signalling in the operational, technological and business domains. Specifically, Virtual Coupling (VC) and Moving Block (MB) signalling are compared in terms of eight key criteria and benchmarked with respect to the current state of practice for the different rail market segments identified by the S2R MAAP (i.e. high-speed, main-line, regional, urban and freight). Quantitative criteria include total costs, infrastructure capacity, system stability, travel demand, and energy consumption. In addition, qualitative criteria include public acceptance, regulatory approval, and safety. Consolidated mathematical techniques and engineering methods have been used to assesseach of the quantitative criteria while a Delphi approach has gathered values for the qualitative criteria based on extensive Subject Matter Expert (SME) interviews and workshops.A Multi-Criteria Analysis (MCA) has been setup by implementing a hybrid Delphi-Analytic Hierarchic Process (AHP) technique to weight and combine the different criteria in final performance scores of MB and VC signalling. The adopted Delphi-AHP technique has been proven to enhance collaboration among experts in selecting and weighting the criteria by means of an iterative feedback loop ending when consistent weights of relative criteria importance were achieved.The individual analyses of single criteria show that VC outperforms MB for all market segments in terms of infrastructure capacity, system stability, energy consumption and travel demand. VC enables trains to follow each other at a distance shorter than an absolute braking distance, which can reduce headways significantly, especially if trains can move cooperatively in virtually coupledplatoons. This is also reflected in terms of system stability and energy given that the advantage of running at a shorter safe separation while continuously being informed about the speed of adjacent trains improves the capability of mitigating delay propagation and enhancing energy efficiency. An increased modal shift to railways is observed for VC, especially for the regional and freight markets where a more flexible train service would better satisfy customer needs currently poorly addressed on those segments. Deployment of VC will be slightly more expensive than MB mostly due to the need of installing ATO and V2V communication while operational costs for the two systems will be comparable. Issues and priorities identified for regulatory approval and public acceptance were judged by SMEs to be very similar for MB and VC. In terms of safety, VC scores lower than MB given the different technological maturity level and the larger number of vital issues yet to be solved.The SMEs assigned a very high importance weight to the safety criterion, which therefore affects greatly the final result of the MCA. The MCA score is hence in favour of MB for all market segments, despite the better performance of VC forsingle criteria like capacity, stability, energy consumption and travel demand. A fairer comparison can be obtained when assuming the same maturity level of MB and VC in a future point in time. In that case, VC clearly outperforms MB for all market segments and for freight and regional in particular, given that the provided train service flexibility would facilitate larger modal shifts of the customer demand.Transport and Plannin
    corecore