554 research outputs found

    Involving private healthcare practitioners in an urban NCD sentinel surveillance system: lessons learned from Pune, India

    Get PDF
    Background: Despite the rising impact of non-communicable diseases (NCDs) on public health in India, lack of quality data and routine surveillance hampers the planning process for NCD prevention and control. Current surveillance programs focus largely on communicable diseases and do not adequately include the private healthcare sector as a major source of care in cities. Objective: The objective of the study was to conceptualize, implement, and evaluate a prototype for an urban NCD sentinel surveillance system among private healthcare practitioners providing primary care in Pune, India. Design: We mapped all private healthcare providers in three selected areas of the city, conducted a knowledge, attitude, and practice survey with regard to surveillance among 258 consenting practitioners, and assessed their willingness to participate in a routine NCD surveillance system. In total, 127 practitioners agreed and were included in a 6-month surveillance study. Data on first time diagnoses of 10 selected NCDs alongside basic demographic and socioeconomic patient information were collected onsite on a monthly basis using a paper-based register. Descriptive and regression analyses were performed. Results: In total, 1,532 incident cases were recorded that mainly included hypertension (n622, 41%) and diabetes (n460, 30%). Dropout rate was 10% (n13). The monthly reporting consistency was quite constant, with the majority (n63, 50%) submitting 110 cases in 6 months. Average number of submitted cases was highest among allopathic practitioners (17.4). A majority of the participants (n104, 91%) agreed that the surveillance design could be scaled up to cover the entire city. Conclusions: The study indicates that private primary healthcare providers (allopathic and alternate medicine practitioners) play an important role in the diagnosis and treatment of NCDs and can be involved in NCD surveillance, if certain barriers are addressed. Main barriers observed were lack of regulation of the private sector, cross-practices among different systems of medicine, limited clinic infrastructure, and knowledge gaps about disease surveillance. We suggest a voluntary augmented sentinel NCD surveillance system including public and private healthcare facilities at all levels of care

    Relationship between subcellular localisation of Foscan® and caspase activation in photosensitised MCF-7 cells

    Get PDF
    The present study investigates the relationship between the subcellular localisation of Foscan® and intrinsic apoptotic pathway post Foscan®-based photodynamic therapy (PDT). With this purpose, mammary carcinoma MCF-7 cells were incubated with Foscan® for 3 or 24 h and then subjected to equitoxic light doses. Fluorescence microscopy revealed very good Foscan® co-localization to endoplasmic reticulum (ER) and Golgi apparatus after 3 h incubation with MCF-7 cells. Progressive increase in incubation time shows leakage of Foscan® from Golgi apparatus. Twenty-four hours incubation yielded a fluence-dependent enhanced induction of the ER-resident glucose-regulated protein 78 (Bip/GRP78), along with a weak mitochondrial damage, thus underscoring the ER as the main site of photodamage after prolonged incubation. Analysis of events implicated in apoptotic pathway after 24 h incubation demonstrated photodamage to Bcl-2 protein in total cellular extract, but not in the mitochondrial fraction. We further determined an increase in caspases-7 and -6 activation, which was strongly related to the expression of GRP78. The above findings demonstrate that Foscan® localisation in ER improves the photoactivation of the caspase-7 apoptotic pathway, which is poorly related to mitochondrial damage

    Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth

    Get PDF
    Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer

    Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapy resistance remains a major obstacle for the treatment of small cell lung cancer (SCLC). Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, plays a critical role in chemotherapy resistance in some cancers. However, whether the suppression of the chaperone can enhance the sensitivity of chemotherapy in SCLC is still unclear.</p> <p>Methods</p> <p>The SCLC NCI-H446 cells were divided into three groups: BAPTA-AM→A23187-treated group, A23187-treated group and control-group. Immunofluorescence, western blot and RT-PCR were used to assess the expression of GRP78 at both protein and mRNA levels. Cell apoptosis and the cell cycle distributions of the cells were analyzed by flow cytometry in order to evaluate the therapeutic sensitivity to VP-16.</p> <p>Results</p> <p>The expression of GRP78 at both protein and mRNA levels in the BAPTA-AM→A23187-treated cells dramatically decreased as compared to that in both A23187-treated and control groups. After treatment by VP-16, the percentage of apoptotic cells in BAPTA-AM→A23187-treated cells were: 33.4 ± 1.01%, 48.2 ± 1.77%, 53.0 ± 1.43%, 56.5 ± 2.13%, respectively, corresponding to the concentrations of BAPTA-AM 10, 15, 25, 40 μM, which was statistically significant high in comparison with the A23187-treated group and untreated-group (7.18 ± 1.03% and 27.8 ± 1.45%, respectively, p < 0.05). The results from analysis of cell cycle distribution showed that there was a significantly decreased in G<sub>1 </sub>phase and a dramatically increased in S phase for the BAPTA-AM→A23187-treated cells as compared with the untreated cells.</p> <p>Conclusion</p> <p>BAPTA-AM is a strong inhibitor of GRP78 in the NCI-H446 cell line, the down-regulation of GRP78 can significantly increase the sensitivity to VP-16. The suppression of GRP78 may offer a new surrogated therapeutic approach to the clinical management of lung cancer.</p

    Groundwater Nitrogen Pollution and Assessment of Its Health Risks: A Case Study of a Typical Village in Rural-Urban Continuum, China

    Get PDF
    Protecting groundwater from nitrogen contamination is an important public-health concern and a major national environmental issue in China. In this study, we monitored water quality in 29 wells from 2009 to 2010 in a village in Shanghai city, whick belong to typical rural-urban continuum in China. The total N and NO3-N exhibited seasonal changes, and there were large fluctuations in NH4-N in residential areas, but without significant seasonal patterns. NO2-N in the water was not stable, but was present at high levels. Total N and NO3-N were significantly lower in residential areas than in agricultural areas. The groundwater quality in most wells belonged to Class III and IV in the Chinese water standard, which defines water that is unsuitable for human consumption. Our health risk assessments showed that NO3-N posed the greatest carcinogenic risk, with risk values ranging from 19×10−6 to 80×10−6, which accounted for more than 90% of the total risk in the study area

    Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Get PDF
    Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner

    Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon

    Get PDF
    In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability. The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann-Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size. The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48-56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As. The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon. These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights

    Translating evidence into policy for cardiovascular disease control in India

    Get PDF
    Cardiovascular diseases (CVD) are leading causes of premature mortality in India. Evidence from developed countries shows that mortality from these can be substantially prevented using population-wide and individual-based strategies. Policy initiatives for control of CVD in India have been suggested but evidence of efficacy has emerged only recently. These initiatives can have immediate impact in reducing morbidity and mortality. Of the prevention strategies, primordial involve improvement in socioeconomic status and literacy, adequate healthcare financing and public health insurance, effective national CVD control programme, smoking control policies, legislative control of saturated fats, trans fats, salt and alcohol, and development of facilities for increasing physical activity through better urban planning and school-based and worksite interventions. Primary prevention entails change in medical educational curriculum and improved healthcare delivery for control of CVD risk factors-smoking, hypertension, dyslipidemia and diabetes. Secondary prevention involves creation of facilities and human resources for optimum acute CVD care and secondary prevention. There is need to integrate various policy makers, develop effective policies and modify healthcare systems for effective delivery of CVD preventive care
    corecore