10 research outputs found

    Some sterile Caloplaca crusts identified by molecular data from the Leningrad region (Russia)

    Get PDF
    Four samples of sterile Caloplaca crusts (Teloschistaceae, lichenized fungi) were determined on the basis of their ITS nrDNA sequences. The samples, collected in NW Russia, mainly from Kotlin Island, Baltic Sea, belong to three species, C. dichroa, C. obscurella and C. phlogina, the first and last species being new to north-western European Russia and to Leningrad region.

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy.

    No full text
    The clinical benefit of immune checkpoint blockade (ICB) therapy is often limited by the lack of pre-existing CD8 T cells infiltrating the tumor. In principle, CD8 T-cell infiltration could be promoted by therapeutic vaccination. However, this remains challenging given the paucity of vaccine platforms able to induce the strong cytotoxic CD8 T-cell response required to reject tumors. A therapeutic cancer vaccine that induces a robust cytotoxic CD8 T-cell response against shared tumor antigens and can be combined with ICB could improve the outcome of cancer immunotherapy. Here, we developed a heterologous prime-boost vaccine based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding MAGE-type antigens, which are tumor-specific shared antigens expressed in different tumor types. The mouse MAGE-type antigen P1A was used as a surrogate to study the efficacy of the vaccine in combination with ICB in murine tumor models expressing the P1A antigen. To characterize the vaccine-induced immune response, we performed flow cytometry and transcriptomic analyses. The ChAdOx1/MVA vaccine displayed strong immunogenicity with potent induction of CD8 T cells. When combined with anti-Programmed Cell Death Protein 1 (PD-1), the vaccine induced superior tumor clearance and survival in murine tumor models expressing P1A compared with anti-PD-1 alone. Remarkably, ChAdOx1/MVA P1A vaccination promoted CD8 T-cell infiltration in the tumors, and drove inflammation in the tumor microenvironment, turning 'cold' tumors into 'hot' tumors. Single-cell transcriptomic analysis of the P1A-specific CD8 T cells revealed an expanded population of stem-like T cells in the spleen after the combination treatment as compared with vaccine alone, and a reduced PD-1 expression in the tumor CD8 T cells. These findings highlight the synergistic potency of ChAdOx1/MVA MAGE vaccines combined with anti-PD-1 for cancer therapy, and establish the foundation for clinical translation of this approach. A clinical trial of ChadOx1/MVA MAGE-A3/NY-ESO-1 combined with anti-PD-1 will commence shortly

    Phenotype and Reactivity of Lymphocytes Expanded from Benign Prostate Hyperplasic Tissues and Prostate Cancer

    No full text
    Benign prostate hyperplasia (BPH) is a frequent condition in aging men, which affects life quality, causing principally lower urinary tract symptoms. Epidemiologic studies suggest that BPH may raise the risk of developing prostate cancer (PCa), most likely promoting a chronic inflammatory environment. Studies aiming at elucidating the link and risk factors that connect BPH and PCa are urgently needed to develop prevention strategies. The BPH microenvironment, similar to the PCa one, increases immune infiltration of the prostate, but, in contrast to PCa, immunosuppression may not be established yet. In this study, we found that prostate-infiltrating lymphocytes (PILs) expanded from hyperplastic prostate tissue recognized tumor-associated antigens (TAA) and autologous tissue, regardless of the presence of tumor cells. PILs expanded from BPH samples of patients with PCa, however, seem to respond more strongly to autologous tissue. Phenotypic characterization of the infiltrating PILs revealed a trend towards better expanding CD4+ T cells in infiltrates derived from PCa, but no significant differences were found. These findings suggest that T cell tolerance is compromised in BPH-affected prostates, likely due to qualitative or quantitative alterations of the antigenic landscape. Our data support the hypothesis that BPH increases the risk of PCa and may pave the way for new personalized preventive vaccine strategies for these patients

    Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses

    No full text
    Modified vaccinia Ankara (MVA) encoding the tumor antigen 5T4 (TroVax®) has been evaluated in an open label phase II study in metastatic colorectal cancer patients. The primary objective was to assess the safety and immunogenicity of TroVax injected before, during and after treatment with 5-fluorouracil, leukovorin and irinotecan. TroVax was administered to 19 patients with metastatic colorectal cancer. Twelve patients had blood samples taken following each of the six injections and were considered to be evaluable for assessment of immunological responses. Both antibody and cellular responses specific for the tumor antigen 5T4 and the viral vector MVA were monitored throughout the study. Administration of TroVax alongside chemotherapy was safe and well tolerated with no SAEs attributed to the vaccine and no enhancement of chemo-related toxicity. Of the 12 patients who were evaluable for assessment of immune responses, ten mounted 5T4-specific antibody responses with titers ranging from 10 to &gt;5,000. IFNγ ELISPOT responses specific for 5T4 were detected in 11 patients with frequencies exceeding one in 1,000 PBMCs in five patients. Eight patients presented with elevated circulating CEA concentrations, six of whom showed decreases in excess of 50% during chemotherapy and four had CEA levels which remained stable for &gt;1 month following completion of chemotherapy. Of the 19 intention to treat (ITT) patients, one had a CR, six had PRs and five had SD. Potent 5T4-specific cellular and/or humoral immune responses were induced in all 12 evaluable patients and were detectable in most patients during the period in which chemotherapy was administered. These data demonstrate that TroVax can be layered on top of chemotherapy regimens without any evidence of enhanced toxicity or reduced immunological or therapeutic efficacy. © 2007 Springer-Verlag
    corecore