118 research outputs found

    Spectrum of Large- and Medium-Vessel Vasculitis in Adults: Neoplastic, Infectious, Drug-Induced, Autoinflammatory, and Primary Immunodeficiency Diseases.

    Get PDF
    PURPOSE OF REVIEW To provide a comprehensive review of drugs and neoplastic, infectious, autoinflammatory, and immunodeficiency diseases causing medium- to large-vessel vasculitis in adults with emphasis on information essential for the initial diagnostic process. RECENT FINDINGS Entities with medium- to large-vessel vasculitis as clinical manifestations have been described recently (e.g., adenosine deaminase-2 deficiency, VEXAS-Syndrome), and vasculitis in established autoinflammatory or immunodeficiency diseases is increasingly being identified. In the diagnostic process of medium- to large-vessel vasculitis in adults, a large variety of rare diseases should be included in the differential diagnosis, especially if diagnosis is made without histologic confirmation and in younger patients. Although these disorders should be considered, they will undoubtedly remain rare in daily practice

    Treatment of inclusion body myositis: is low-dose intravenous immunoglobulin the solution?

    Get PDF
    Inclusion body myositis (IBM), the most common inflammatory myopathy in the elderly, is often resistant to various forms of therapy. Placebo-controlled treatment trials with high dose intravenous immunoglobulins (IVIG) have shown disease amelioration in some but not all patients. Here, we present the informative case of a 70-year-old woman with diagnosed inclusion body myositis that showed progressive muscle weakness without treatment and following immuno-suppressive treatment with corticosteroids and azathioprine. A trial with low-dose intravenous immunoglobulins was started at that time. The patient responded rapidly to low dose IVIG treatment with amelioration of muscle strength and normalization of CK serum activities. Our results demonstrate that IBM patients may respond to low-dose IVIG treatment which has important clinical and economic consequence

    Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss?

    Get PDF
    Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain, tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at onset of narcolepsy. The hallmarks of anti-self reactions in the tissue—namely upregulation of major histocompatibility antigens and lymphocyte infiltrates—are missing in the hypothalamus. These findings are questionable because they were obtained by analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2, which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4+ T cells or superantigen stimulated CD8+ T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause selective destruction of hypocretin neurons in the hypothalamu

    Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia

    Get PDF
    A considerable number of patients with cancer suffer from anemia, which has detrimental effects on quality of life and survival. The mechanisms underlying tumor-associated anemia are multifactorial and poorly understood. Therefore, we aimed at systematically assessing the patho-etiology of tumor-associated anemia in mice. We demonstrate that reduced red blood cell (RBC) survival rather than altered erythropoiesis is driving the development of anemia. The tumor-induced inflammatory and metabolic remodeling affect RBC integrity and augment splenic phagocyte activity promoting erythrophagocytosis. Exercise training normalizes these tumor-associated abnormal metabolic profiles and inflammation and thereby ameliorates anemia, in part, by promoting RBC survival. Fatigue was prevented in exercising tumor-bearing mice. Thus, exercise has the unique potential to substantially modulate metabolism and inflammation and thereby counteracts pathological remodeling of these parameters by the tumor microenvironment. Translation of this finding to patients with cancer could have a major impact on quality of life and potentially survival

    Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss?

    Get PDF
    Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain, tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at onset of narcolepsy. The hallmarks of anti-self reactions in the tissue--namely upregulation of major histocompatibility antigens and lymphocyte infiltrates--are missing in the hypothalamus. These findings are questionable because they were obtained by analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2, which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4(+) T cells or superantigen stimulated CD8(+) T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause selective destruction of hypocretin neurons in the hypothalamus

    Nonneutralizing antibodies binding to the surface glycoprotein of lymphocytic choriomeningitis virus reduce early virus spread

    Get PDF
    The biological relevance of nonneutralizing antibodies elicited early after infection with noncytopathic persistence-prone viruses is unclear. We demonstrate that cytotoxic T lymphocyte–deficient TgH(KL25) mice, which are transgenic for the heavy chain of the lymphocytic choriomeningitis virus (LCMV)–neutralizing monoclonal antibody KL25, mount a focused neutralizing antibody response following LCMV infection, and that this results in the emergence of neutralization escape virus variants. Further investigation revealed that some of the escape variants that arose early after infection could still bind to the selecting antibody. In contrast, no antibody binding could be detected for late isolates, indicating that binding, but nonneutralizing, antibodies exerted a selective pressure on the virus. Infection of naive TgH(KL25) mice with distinct escape viruses differing in their antibody-binding properties revealed that nonneutralizing antibodies accelerated clearance of antibody-binding virus variants in a partly complement-dependent manner. Virus variants that did not bind antibodies were not affected. We therefore conclude that nonneutralizing antibodies binding to the same antigenic site as neutralizing antibodies are biologically relevant by limiting early viral spread

    Reduced thymic output, cell cycle abnormalities, and increased apoptosis of T lymphocytes in patients with cartilage-hair hypoplasia

    Get PDF
    Producción CientíficaBackground: Cartilage-hair hypoplasia (CHH) is characterized by metaphyseal dysplasia, bone marrow failure, increased risk of malignancies, and a variable degree of immunodeficiency. CHH is caused by mutations in the RNA component of the mitochondrial RNA processing (RMRP) endoribonuclease gene, which is involved in ribosomal assembly, telomere function, and cell cycle control. Objectives: We aimed to define thymic output and characterize immune function in a cohort of patients with molecularly defined CHH with and without associated clinical immunodeficiency. Methods: We studied the distribution of B and T lymphocytes (including recent thymic emigrants), in vitro lymphocyte proliferation, cell cycle, and apoptosis in 18 patients with CHH compared with controls. Results: Patients with CHH have a markedly reduced number of recent thymic emigrants, and their peripheral T cells show defects in cell cycle control and display increased apoptosis, resulting in poor proliferation on activation. Conclusion: These data confirm that RMRP mutations result in significant defects of cell-mediated immunity and provide a link between the cellular phenotype and the immunodeficiency in CH

    Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage

    Get PDF
    Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces
    corecore