
BRAIN
A JOURNAL OF NEUROLOGY

REVIEW ARTICLE

Narcolepsy: autoimmunity, effector T cell
activation due to infection, or T cell independent,
major histocompatibility complex class II induced
neuronal loss?
Adriano Fontana,1 Heidemarie Gast,2 Walter Reith,3 Mike Recher,1 Thomas Birchler1 and
Claudio L. Bassetti4

1 Institute of Experimental Immunology, University Hospital Zurich, Zurich 8044, Switzerland

2 Department of Neurology, Inselspital, University Hospital Berne, University Berne, Berne 3010, Switzerland

3 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland

4 Neurocenter of Southern Switzerland and Department of Neurology, University Hospital Zurich, Zurich 8091, Switzerland

Correspondence to: Adriano Fontana,

Institute of Experimental Immunology,

University Hospital Zurich,

Haeldeliweg 4,

CH 8044 Zurich,

Switzerland

E-mail: adriano.fontana@usz.ch

Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons

in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease

typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an

immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain,

tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at

onset of narcolepsy. The hallmarks of anti-self reactions in the tissue—namely upregulation of major histocompatibility antigens

and lymphocyte infiltrates—are missing in the hypothalamus. These findings are questionable because they were obtained by

analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2,

which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing

neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4+ T cells or

superantigen stimulated CD8+ T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia

and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause

selective destruction of hypocretin neurons in the hypothalamus.
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Introduction
Narcolepsy with cataplexy—a sudden, short loss of muscle tone

triggered by emotions—is a disabling chronic brain disorder

characterized by excessive daytime sleepiness, sleep paralysis,

hallucinations and disturbed nocturnal sleep. Although the severity

of daytime sleepiness is fluctuating, it is present most of the time.

Daytime sleepiness ranges from mild sleepiness that is easily over-

come to excessive overwhelming and irresistible daytime sleepi-

ness. The latter may manifest itself by episodes of daytime sleep

occurring without warning (‘sleep attacks’) (Dement et al., 1976;

Bassetti and Aldrich, 1996). The prevalence of narcolepsy with

cataplexy falls between 25 and 50 per 100 000 people

(Longstreth et al., 2007). There seems to be a slight male

predominance. Age at onset is between 15 and 40 years in

most cases.

Up to 95% of patients with narcolepsy and cataplexy have low

CSF hypocretin-1 levels (Nishino et al., 2000; Baumann and

Bassetti, 2005; Bourgin et al., 2008). Autoptic data suggest that

this deficiency reflects a loss of hypothalamic neurons which

produce hypocretin peptides (hypocretin-1 and hypocretin-2;

also known as orexins A and B) (Thannickal et al., 2000), which

in turn bind to hypocretin receptors (hypocretin receptor-1 and

hypocretin receptor-2). The hypocretin system in sleep, wakeful-

ness and narcolepsy has been discussed in detail elsewhere (for

review see Sakurai, 2007). In brief, two independent studies in

1999 showed that mutations in the hypocretin-2 receptor gene

are responsible for canine narcolepsy-cataplexy and a gene

deletion of hypocretin in mice leads to a phenotype strikingly

similar to human narcolepsy (Chemelli et al., 1999; Lin et al.,

1999). Hypocretin-1 and hypocretin-2, which are derived from a

common precursor peptide, the prepro-orexin, share significant

homology in their C-terminal part. Hypocretin-1 binds to two G

protein-coupled receptors named hypocretin receptor-1 and -2.

Whereas the latter is a non-selective receptor for both peptides,

hypocretin receptor-1 is selective for hypocretin-1. Both

hypocretin-1 and -2 are exclusively produced in the lateral

hypothalamic area; their respective receptors are expressed in

the entire CNS. In regard to the narcolepsy-like phenotype in

animals with non-functional hypocretin or hypocretin receptor

genes it is remarkable that hypocretin-1 and -2 increase wake

time and decreased rapid eye movement and non-rapid eye move-

ment sleep time. The inability to maintain wakefulness seems to

depend critically upon hypocretin-2, while the profound dysregu-

lation of rapid eye movement sleep control emerges from loss of

signalling through both hypocretin receptor-1 and hypocretin

receptor-2-dependent pathways (Willie et al., 2003); for review

see Ohno and Sakurai (2008).

In humans, only one patient with an early onset of disease in

childhood has been reported to have a mutation in the hypocretin

gene (Peyron et al., 2000). The aetiology of the reduction in the

number of neurons containing detectable pro-hypocretin mRNA or

hypocretin-like immunoreactivity in the hypothalamus in narco-

lepsy remains unexplained. Low hypocretin concentrations in the

CNS may point to a failure of the neurons to produce hypocretin.

In the normal hypothalamus, 80% of the hypocretin-producing

neurons also express prodynorphin and neuronal activity-regulated

pentraxin. The number of neurons expressing these gene products

is reduced in proportion to the loss of hypocretin neurons (Blouin

et al., 2005; Crocker et al., 2005). The selectivity of the loss

of hypocretin neurons in the hypothalamus is shown by the

absence of reduction in the number of neurons expressing

melanin-concentrating hormone (Thannickal et al., 2009). In this

review we will focus on immunological mechanisms possibly

involved in the pathophysiology of the disease.

Why should narcolepsy
have anything to do with
immunology? It is the
association with HLA-DR2
genes and a newly discovered
T cell receptor alpha
polymorphism
Narcolepsy is genetically characterized by strong linkage to distinct

human leucocyte antigen (HLA) alleles. A genetic association of

narcolepsy with HLA-DR2 and HLA-DQ1 in the major histocom-

patibility (MHC) region was described more than 20 years ago

(Langdon et al., 1984). High resolution typing by DNA techniques

has further characterized the DR2 and DQ1 serological specificities

associated with narcolepsy. As reviewed recently, the association

between HLA class II genes and narcolepsy was present in all

ethnic groups and the most tightly linked HLA allele was

DQB1*0602 (Tafti, 2009). Whereas this allele is present in only

12–38% of the general population, more than 85% of the

patients with narcolepsy-cataplexy have the HLA DQB1*0602

allele, most often in combination with HLA-DR2 (DRB1*1501)

(Mignot, 1998). Moreover, the DQB1*0602 allele alone, particu-

larly when homozygous, was the major narcolepsy susceptibility

allele in different ethnic groups including African-Americans,

Caucasian-Americans and Japanese (Mignot et al., 2001).

Several alleles have been identified that appeared to be protective

(DQB1*0601, DQB1*0501 and DQA1*01) (Mignot et al., 2001).

Among genetic factors linked to autoimmune disease develop-

ment, MHC class II (MHCII) genes on chromosome 6 account for

the majority of cases of familial clustering in common autoimmune

diseases, and have also been linked to sporadic forms. In systemic

lupus erythematosus, the most consistent HLA associations are

with the MHCII allotypes, HLA-DR3 and HLA-DR2. A pre-eminent

role of the extended haplotype defined by HLA-DRB1*1501 has

also been highlighted in recent studies on multiple sclerosis

(Fernando et al., 2008). The mechanisms that account for

MHCII associated anti-self immunity remain poorly defined.

Tolerance to self-antigens is achieved by deletion of T cell precur-

sors that express T cell receptors (TCRs) having high avidity for

self-antigen—MHC complexes expressed on dendritic cells and

epithelial cells in the thymus. Peripheral immune tolerance mech-

anisms control mature T cells that bear a TCR of low avidity for

Immune mechanisms in narcolepsy Brain 2010: 133; 1300–1311 | 1301



self-antigen—MHC complexes and that escape from the thymus

to the periphery (Mueller, 2010). A commonly held view is that

disease-associated HLA allotypes promote a breach of peripheral

self-tolerance because they favour the presentation of specific

self-peptides to autoreactive T cells. Alternatively, the disease-

associated HLA allotypes could bias the TCR repertoire generated

during T cell development in the thymus towards the selection of

potentially pathogenic autoreactive specificities. It has also been

proposed that autoimmunity might be promoted by ectopic or

inappropriately high levels of HLA expression in the diseased tis-

sues. An intriguing observation has been provided by crystallo-

graphic studies using a soluble form of DQ0602 complexed with

a peptide from human hypocretin (amino acids 1–13) (Siebold

et al., 2004). The hypocretin peptide is presented in the

DQ0602-binding grove with peptide side chains anchored in the

P4 and P9 pockets. These pockets differ significantly between

the DQ0602 narcolepsy susceptibility molecule and DQ0601, an

allele that is protective. Since no anti-self immunity to hypocretin

has been detected so far, the significance of these studies

remains open.

The hallmarks of T cell involvement in autoimmune diseases

are the presence of T cells sensitized to self-antigens, dysregulated

effector CD4+ T cells, such as T helper 17 cells, low titres of

regulatory T cells, and inflammation at the sites of autoimmune

attack. The inflammatory reaction is typically characterized by a

local accumulation of CD4+ T cells and proinflammatory macro-

phages with increased expression of MHCII and cytokines. None

of these characteristic features of T cell autoimmunity have been

documented in narcolepsy. However, in a highly interesting recent

study on T cell receptor alpha (TCR�) or -beta (TCRb) subtypes,

807 narcolepsy patients positive for HLA-DQB1*0602 and exhibit-

ing hypocretin deficiency in the CSF, as well as 1074 controls were

selected for a genome-wide association study. The data identified

an association between narcolepsy and polymorphisms in the

TCR� locus. The TCR� chain is part of the TCR of CD8+ T cells,

which recognize antigens presented by HLA class I molecules, and

CD4+ T cells, which recognize antigens presented by HLA class II

molecules, including the DQ� (alpha) b (beta) heterodimer

denoted DQ 0602, which is encoded by the DQB1*0602 and

DQA1*0102 alleles. Somatic recombination in the TCR� and

TCRb loci in developing T cells leads to the generation of a diverse

repertoire of distinct TCR� b idiotype-bearing T cells. Since

narcolepsy is almost exclusively associated with a single HLA

allele—DQB1*0602—the authors suggest that the TCR� poly-

morphism could contribute to autoimmunity directed against

hypocretin neurons by influencing the occurrence of variable-

joining region VJ2 recombinations that can interact with

DQ0602 (Hallmayer et al., 2009).

Another interesting observation has recently been described in a

series of experiments reported by Carla Shatz (2009). Since the

initial report of MHCI expression and activity regulation in

neurons, it has been suggested that altered MHCI expression con-

tributes to synaptic changes and learning defects (for review see

Shatz, 2009). In a search for MHCI-binding receptors, TCRb
mRNA was detected in neurons. However, TCR�—the second

obligatory component of a functional TCR—was not detected in

neurons. As a hypothesis, polymorphism of the TCR�-b genes may

influence the interaction with MHCI and thereby neuroprotection

in disease states (Boulanger and Shatz, 2004). Some support

for this comes from experiments with mice that lack either

b2-microglobulin—a cosubunit for MHCI—or the transporter asso-

ciated with antigen processing 1 (TAP1) required for loading

antigen peptides onto MHCI molecules. Sciatic nerve transsection

in both types of mutant mice showed axotomized �-motoneurons

to have more extensive detachments of synapses than those in

wild-type mice (Oliveira et al., 2004). More sensitive techniques

to detect TCR� and b gene expression and studies on TCR—MHCI

interactions on neurons are required to come to conclusions on the

significance of MHCI expression by neurons.

The strong association of narcolepsy with HLA-DQB1*0602 has

prompted interest in the hypothesis that narcolepsy is an auto-

immune disease. However, several issues relevant to this model

deserve emphasis.

(i) From a clinical point of view, a specific autoimmune disease

is often associated with various other autoimmune manifest-

ations in the affected individual or in the family of the

patient. Classical autoimmune diseases, such as systemic

lupus erythematosus, rheumatoid arthritis or myasthenia

gravis have not been reported to be increased in narcoleptic

patients or their families. In fact, other autoimmune diseases

(e.g. systemic lupus erythematosus, multiple sclerosis and

neuromyelitis optica with anti-aquaporin-4 antibodies) have

been observed only very rarely in narcoleptic patients

(Younger et al., 1991; Pablos et al., 1993; Baba et al.,

2009).

(ii) Unlike the situation observed in other autoimmune diseases,

including systemic lupus erythematosus, rheumatoid arthritis

and Sjögren syndrome, associated autoantibodies such as

antinuclear antibodies, antibodies to nDNA, SS-A, Sm, his-

tone and rheumatoid factor are not increased in narcolepsy

(Rubin et al., 1988). It is of note that no data are provided

about the duration of the disease at the time point when the

sera were taken for the study.

(iii) Intrathecal synthesis of immunoglobulins and oligoclonal

bands are only rarely seen in the CSF of narcoleptic patients.

One study reported two out of 15 patients to have oligo-

clonal bands and one of these to have an increased IgG

index in the CSF. These patients had narcoleptic symptoms

for 7 and 33 years, respectively (Fredrikson et al., 1990). In

another study, four of 22 patients with narcolepsy showed

oligoclonal bands in the CSF. The disease duration was 8,

10, 12 and 30 years, respectively. Measurement of anti-

bodies to various viruses showed three patients to be

positive for the herpes simplex virus (two patients) or

cytomegalovirus (Schuld et al., 2004). The assays used are

not sensitive enough to detect the production of antibodies

to CNS antigens.

(iv) There is so far no evidence for the presence of antibodies to

hypocretin or hypocretin receptor in the disease and anti-

bodies to Tribbles homolog 2 (Trib2) which is expressed by

hypocretin producing neurons have been detected in only

14% of narcoleptic patients (see below).
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(v) Autopsy studies have not shown an accumulation of T or

B lymphocytes in the CNS, an influx of monocytes from the

blood or an activation of microglia in the tissue, at least not

at late time points of the disease (Table 1). The limited

availability of tissues and CSF at early time points of the

disease has hampered the search for autoantibodies and

the detection of oligoclonal bands in CSF.

(vi) Finally, systemic markers indicating inflammation, such as

increased blood sedimentation and elevated C-reactive

protein cannot be demonstrated. Since intravenous immuno-

globulins proved effective in the treatment of various

autoimmune diseases, it is interesting to look at the response

of this treatment in narcoleptic patients. Several single

observations point to beneficial effects when immunoglo-

bulins are administrated close to disease onset (Plazzi

et al., 2008). However, persistent improvements of narco-

leptic symptoms were not observed in four other patients as

recently reported (Valko et al., 2008). Taken together, these

clinical findings do not support a role for local or even

systemic autoimmunity in narcolepsy. Several of the afore-

mentioned issues will be discussed in more detail below.

Are anti-neuronal antibodies
involved?
Loss of hypocretin neurotransmission may be due to impaired

production and/or secretion of hypocretin by neurons, or result

from the loss of neurons that produce hypocretin. Several studies

have addressed the hypothesis that autoantibodies may lead to

alterations in the hypocretin system. An increased IgG index or

oligoclonal bands were detected infrequently in the CSF of

patients with narcolepsy (see above). Thus intrathecal synthesis

of autoantibodies by local plasma cells is not a uniform finding

of the disease (Fredrikson et al., 1990; Schuld et al., 2004).

Furthermore, recent studies have failed to detect specific antibo-

dies against hypocretin or hypocretin receptors (Black et al., 2005;

Tanaka et al., 2006). In these studies no data are provided in

regard to the time point of disease onset and sampling of the

sera. No antibodies to hypothalamic neurons became detectable

in the sera of 46 narcoleptic patients, the duration of illness being

23.6� 10.6 years (Overeem et al., 2006). Likewise, antibodies to

hypothalamic neurons were documented in only one of 9 patients,

and the antibody epitope was not characterized (Knudsen et al.,

2007). Insulin-like growth factor binding protein 3, which is

expressed in hypocretin neurons and downregulated in narcolepsy,

has recently been identified as a potential new autoimmune

target. However, no anti-insulin-like growth factor binding protein

3 antibodies were detected in human sera or the CSF of patients.

Insulin-like growth factor binding protein 3 concentrations in

the CSF were not decreased (Honda et al., 2009b). A new IgG

antibody from patients with narcolepsy has been described to

interfere with smooth muscle contractions in mouse colon prepar-

ations (Jackson et al., 2008). The epitopes of the antibodies

detected in the assay remain unclear. Hypocretin is apparently

not expressed in the murine gut (Baumann et al., 2008).

In a most recent, elegant search for proteins, which are

expressed exclusively by hypocretin producing neurons, the

screening approach came up with Trib2. While further character-

ization showed that Trib2 is not only expressed by hypocretin

neurons, but also by other neurons, the study nevertheless

points to Trib2 being an autoantigen in patients with narcolepsy

(Cvetkovic-Lopes et al., 2010). Using the 28 C-terminal amino

acids of Trib2 in an ELISA assay, 20 (14%) of 143 narcoleptic

patients had antibody titres of more than 2 SD above the mean

titre of healthy controls. Only 2 (5%) out of 42 healthy controls

had such antibodies (42 SD). The anti-Trib2 antibody titres were

detected more often in the first year of disease onset.

Immunhistochemistry showed that antibodies recognize hypocretin

Table 1 Autoimmunity in narcolepsy?

References

Pro

Association with HLA-DR2/DQB1*0602 Langdon et al., 1984; Matsuki et al., 1992

Polymorphism in the TCR� locus Hallmayer et al., 2009

Dysregulation of TNF/TNF receptor system Hohjoh et al., 2001a; Okun et al., 2004; Himmerich et al., 2006

Increased antibodies to streptolysin and to DNAseB Billiard et al., 1989; Aran et al., 2009

Anti-Trib2 antibodies Cvetkovic-Lopes et al., 2010

Contra

Only rare association with known autoimmune diseases in patients with
narcolepsy, or in their families (e.g. systemic lupus erythematosis,
multiple sclerosis)

Pablos et al., 1993; Baba et al., 2009

No autoantibodies to nuclear proteins (antinuclear antibodies,
anti-nDNA)

Rubin et al., 1988

Usually no increase in IgG index and no oligoclonal bands in CSF Fredrickson et al., 1990; Schuld, 2004

No narcolepsy specific antibodies (anti-neuronal, anti-hypocretin,
anti-hypocretin receptor)

Black et al., 2005; Tanaka et al., 2006

No signs of inflammation in autopsy studies and no elevation of
C-reactive protein

Aran et al., 2009; Honda et al., 2009a; Thannickal et al., 2009

No TNF gene expression in the CNS Peyron et al., 2000
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neurons in the mouse hypothalamus. However, the staining

pattern looks cytoplasmic, which raises the question if the auto-

antibody would reach its intracellular antigen—Trib2—in vivo.

Future studies should aim at (i) developing the ELISA system

further in order to find other intramolecular epitopes which

harbour more dominant B cell epitopes than the C-terminal part

of the Trib2 protein; (ii) testing for T cell responsiveness to Trip2

and (iii) investigating if mice immunized with Trib2 or injected with

anti-Trib2 antibodies will develop a narcolepsy-like disease. Of

note, three of five patients with uveitis have been identified to

have anti-Trib2 antibodies (Zhang et al., 2005). However, since

the first description, the functional significance of the antibody

detected in uveitis has not been further investigated.

Antibodies to intracellular antigens are common in old people

and in a variety of infections and autoimmune diseases. However,

these antibodies are not directly involved in causing disease. The

same holds true for many of the anti-neuronal antibodies that

characterize neurological paraneoplastic disorders. This contrasts

antibodies to voltage-gated potassium or calcium channels located

at nerve terminals, which may lead to limbic encephalitis and

paraneoplastic cerebellar degeneration, respectively (for review

see Dropcho, 2005). Limbic encephalitis may also be associated

with antibodies to N-methyl-D-aspartic acid receptors (Graus et al.,

2008). In a recent study on 38 patients with antibodies to the

onconeuronal protein Ma-2, five patients were identified with ex-

cessive daytime sleepiness, and low to undetectable hypocretin in

the CSF that may indicate hypothalamic dysfunction (Dalmau

et al., 2004). However, anti-Ma-2 autoantibodies were not

detected in patients with narcolepsy (n = 19), the mean duration

of illness being 9.7� 8.3 years (Overeem et al., 2004). However,

the clinical spectrum of anti-neuronal antibodies may be much

broader. For example, the risk of Parkinson’s disease is increased

among women with autoimmune diseases including Graves’

disease, insulin-dependent diabetes and pernicious anaemia

(Rugbjerg et al., 2009). These data may indicate the presence of

autoantibodies to dopaminergic neurons.

Are there signs of
inflammation in the CNS
in narcolepsy?
In autoimmune diseases, histological examination frequently re-

veals cellular infiltrates consisting of lymphocytes, plasma cells

and macrophages in areas of tissue destruction. It is therefore of

importance to determine whether this is seen in narcolepsy. What

regions in the CNS should be analysed in depth? As outlined

above, special attention should be given to hypocretin-1 and -2

producing neurons in the hypothalamus, and to the hypocretin

projection fields. Since the disease does not reduce life expectancy,

histological examination of brains is hardly an available option. In

one patient having a hypocretin mutation, early onset narcolepsy

(age 6 months) and a long follow-up over many years, histological

analysis did not show ‘obvious lesions’ and the presence of a mild

astrogliosis in the perifornical area remains controversial (Honda

et al., 2009a, Thannickal et al., 2009). Most importantly,

immunohistochemical staining of HLA-DR revealed normally dis-

tributed resting microglia in both the white and grey matter of

two narcoleptic subjects. Neither of the cases (aged 77 and 67

years) was associated with activated, amoeboid microglia. This is

remarkable, since the upregulation of HLA-DR expression and

microglia activation are hallmarks of immune-mediated inflamma-

tion in the CNS. In the context of a description of dysregulated

tumour necrosis factor (TNF) expression (see below) it is interest-

ing to note that in situ hybridization for TNF RNA did not reveal a

significant signal in control and narcoleptic tissue (Peyron et al.,

2000). Taken together, these findings do not support the model

that T cells and macrophages induce a reduction in the numbers of

hypocretin neurons. However, altered MHCI, MHCII and TNF

expression may only be seen early on, at the time of the loss of

hypocretin neurons, but not years after onset of disease.

Are TNF-a and its receptors
critical for the pathogenesis
of narcolepsy?
A growing body of evidence supports a role of the cytokine TNF-�

in sleep disorders, including narcolepsy, fatigue in infectious and

autoimmune diseases and in sleep apnoea. TNF is a homotrimeric

cytokine that binds to two receptors, TNF receptor 1 and TNF

receptor 2. TNF is synthesized as a type-2 transmembrane protein

that is inserted into the membrane as a homotrimer and cleaved

by the matrix metalloprotease TNF-� converting enzyme (ADAM

17) to a 51 kDa soluble circulating trimer (Idriss and Naismith,

2000). Both membrane-bound and soluble forms are mainly pro-

duced by monocytes, macrophages and dendritic cells. In the con-

text of sleep disorders, it is of note that TNF is produced in the

CNS, mainly by microglia cells and astrocytes, but also by neurons

(Frei et al., 1989; Lieberman et al., 1989; Probert and Akassoglou,

2001). TNF binds to TNF receptors 1 and 2, which are membrane

glycoprotein receptors. TNF receptor 1 is expressed on all types of

cells and binds membrane-bound TNF as well as soluble TNF. This

contrasts with TNF receptor 2, which is mainly expressed on cells

of the immune system, including microglia, and by endothelial

cells, and which binds only membrane-bound TNF (Wajant

et al., 2003). TNF is a pleiotropic inflammatory cytokine that

acts on parenchymal cells in various organs, including the CNS,

in which it modulates the functions of microglia, oligodendrocytes,

astrocytes and neurons. With respect to sleep disorders it is

of note that TNF alters glutaminergic transmission and synaptic

plasticity and scaling. TNF increases �-amino-3-hydroxyl-

5-methyl-4-isoxazole-propionate (AMPA) receptors on neurons

and leads to inhibition of the expression of GABAA receptors,

which together leads to increased excitatory synaptic transmission

(Campbell and Trowsdale, 1993; Beattie et al., 2002; Stellwagen

et al., 2005; Stellwagen and Malenka, 2006). The TNF locus is

situated within the Class III region of the human MHC complex on

chromosome 6p21. In light of the association of narcolepsy with

HLA-DQB1*0602 it is interesting to study the expression of this

cytokine in narcoleptic patients.
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Interleukin-1b, interleukin-1 receptor antagonist, interleukin-2,

TNF and lymphotoxin-alpha in plasma and in mitogen-stimulated

monocytes and lymphocytes were not found to differ between

narcolepsy patients and HLA-DR2 matched control subjects

(Hinze-Selch et al., 1998). Only interleukin-6 was found to be

increased in lipopolysaccharide activated monocytes in narcolepsy.

However, increased TNF and interleukin-6 serum levels compared

to age- and gender-matched controls were detected in a later

study by Okun et al. (2004), who found the TNF concentration in

patients’ sera to be 13.9� 1.39 pg/ml (control: 8.2� 0.45 pg/ml)

and the interleukin-6 concentrations to be 6.7� 1.45 pg/ml

(control: 0.49� 0.09 pg/ml for IL-6) (Okun et al., 2004). In

the latter study, stimulatory drugs were associated with lower

TNF levels. As outlined above, genetic polymorphism in the

Tnf promoter may also influence TNF serum concentrations.

The TNF allele with the C-857T polymorphism was strongly asso-

ciated in the subgroup of DRB1*15/16 (HLA-DR2 type) negative

patients (Wieczorek et al., 2003). In a recent, well controlled

study, new information was obtained by Himmerich et al.

(2006). Whereas serum TNF was not increased, narcoleptic

patients had higher soluble TNF receptor 2 (but not soluble

TNF receptor 1) compared to controls. This may be explained

by genetic polymorphisms. Positive correlations have been

observed for the TNF (-857T) and TNF receptor 2 (-196T) com-

bination with narcolepsy, and for DRB1*1501 and TNF (-857T)

(Hohjoh et al., 2001a, b). Further studies should address the

relationship between soluble TNF receptor 2 and HLA-DR2.

Collectively, there is evidence that TNF and soluble TNF recep-

tor serum concentrations are abnormal in patients with narcolepsy

and that there are Tnf and TNF receptor 2 gene polymorphisms

that are linked to the HLA-DQB1*0602 allele. It is of note,

however, that the TNF promoter -857T allele, which correlated

with the presence of the TNF receptor 2 -196T allele in narco-

lepsy, has been found to be associated with an almost twice as

high TNF produced by blood mononuclear cells (Hohjoh and

Tokunaga, 2001c). Elevated plasma levels of soluble TNF receptor

2 have not only been detected in narcolepsy, but also in inflam-

matory diseases including rheumatoid arthritis (Glossop et al.,

2005). The extent of production of membrane-bound TNF, soluble

TNF and TNF receptor in the hypothalamus at onset of disease has

not yet been explored. It is open whether production of TNF and

TNF receptor 2 follows activation of MHCII expressing cells and

neurons, or follows tissue injury (Knoblach et al., 1999).

The studies on narcolepsy outlined above are also intriguing

because subcutaneous infusion of TNF impairs locomotor activity

in mice and lowers the expression of clock genes in the liver. TNF

acts on clock genes that are regulated by E-boxes in their

promoters—namely the PAR bZip clock controlled genes Dbp,

Tef and Hlf and the period genes Per1, Per2 and Per3—but not

Clock nor Bmal1, which lack E-boxes in their regulatory DNA

regions (Cavadini et al., 2007). Since clock genes are central in

the sleep-wake cycle and map to mouse chromosome 5 within a

region syntenic to human chromosome 4g12, a region close to the

narcolepsy susceptibility locus 4p/3-q21 identified recently, poly-

morphisms have been analysed in the Clock gene (Nakayama

et al., 2000). However, no differences in allelic and genotypic

frequencies of two clock polymorphisms have been observed in

narcolepsy compared to controls (Moreira et al., 2005).

Death of hypocretin expressing
neurons in narcolepsy from an
immunological point of view
Taking into account the immunological features of narcolepsy

outlined above (HLA-DQB1*0602 association, polymorphisms in

the TNF/TNF receptor genes and in the TCR� locus, anti-Trib2

antibodies), death of hypocretin neurons in narcolepsy could be

immune mediated. T cell cytotoxicity mediated by MHCI restricted

neuronal killing is unlikely. Antigen-specific lysis of target cells

by cytotoxic CD8+ T cells requires expression of MHCI antigens

(Walter and Santamaria, 2005). However in the normal CNS,

these molecules are not expressed, or only at low levels, in

synapses and dendrites of neurons (Goddard et al., 2007). The

induction of MHCI molecules and b2-microglobulin also depends

on membrane depolarization (Neumann et al., 1995; Rensing-Ehl

et al., 1996). In autoimmune and viral diseases of the CNS there is

still no convincing evidence for MHCI-dependent killing of neu-

rons by CD8+ T cells. The sensitivity of neurons to cytotoxic CD8+

T cell-mediated killing has only been demonstrated convincingly

with neurons transfected with a gene encoding an MHC class I

molecule (Joly et al., 1991; Rall et al., 1995).

MHCII molecules such as HLA-DR2 and HLA-DQB1*0602 bind

(self) antigens and interact with antigen-specific TCRs on CD4+

T cells (Chen et al., 2009). MHCII in the CNS is only expressed by

microglia and by blood derived monocytes, perivascular macro-

phages and dendritic cells. These cells may activate invading

CD4+ T cells in an antigen and MHCII dependent manner.

However, autoptic studies in narcolepsy have detected neither

T cells nor increased MHCII expression in the hypothalamus.

Since these studies were performed with tissues from patients

with long lasting disease, it cannot be excluded that the picture

might be very different at the onset of narcolepsy. CD4+ T cells

may recognize bacterial antigens, e.g. streptococcal antigens

and/or self-antigens. The latter could be a consequence of

molecular mimicry between host and pathogen as shown for

example in post-streptococcal Sydenham chorea (Kirvan et al.,

2003). Patients with narcolepsy (n = 200), that are characterized

by being DQB1*0602 positive and low hypocretin in the CSF,

have recently been found to have increased antibodies to strepto-

lysin and to DNAseB within the first 3 years after onset of disease

when compared to age-matched controls (n = 200) (Aran et al.,

2009). C-reactive protein levels were not increased. Antibodies to

streptolysin and antibodies to DNAseB titres were highest close to

narcolepsy onset, and decreased with disease duration. This

contrasts with anti-Helicobacter pylori antibodies, which did not

differ from controls. Clinical studies showed that the risk of

narcolepsy in a person with a history of a physician-diagnosed

streptococcal throat infection before age 21 was 5.4-fold higher

than in individuals without such a history (Longstreth et al., 2009).

Twenty years ago, increased streptolysin and DNAseB antibody

titres were observed in a small number of narcoleptic patients,
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although this finding was not reproduced later (Billiard et al.,

1989; Mueller-Eckhardt et al., 1990). Group size and the time

interval between onset of disease and blood testing may contrib-

ute to differences in the data.

Immune-mediated bystander
killing of neurons
In narcolepsy, the loss of neurons is very selective and includes

neurons expressing hypocretin-1, but not neighbouring neurons

that produce melanin-concentrating hormone (Blouin et al.,

2005; Thannickal et al., 2009). Selectivity could be due to neuro-

toxic autoantibodies binding to unique antigens expressed only by

hypocretin neurons. However, such antibodies have not been

detected so far (see above).

Because neurons express only low levels of MHCI/II, T lympho-

cytes are unlikely to interact in an antigen-dependent way with

neuronal cells. However, T cell-mediated killing of neurons could

be indirect, neurotoxicity being due to T cell-mediated bystander

killing. For example, CA1 hippocampal neurons expressing a trans-

gene encoding the nucleoprotein of Borna disease virus showed

no damage when mice were injected with Borna disease

virus-specific CD8+ T cells (Richter et al., 2009). This contrasts

with mice expressing the nucleoprotein of Borna disease virus in

astrocytes. In this situation, Borna disease virus-specific CD8+

T cells were found to interact with regional nucleoprotein positive

astrocytes and thereby caused collateral damage to uninfected

CA1 neurons. This effect was thought to be the result of neuro-

toxic molecules released from functionally impaired astrocytes

(Richter et al., 2009). Using glutamate receptor antagonists,

death of uninfected hippocampal CA1 neurons due to glutamate

receptor overstimulation was excluded. The authors suggest that

the interaction of CD8+ T cells with astrocytes may impair

astrocyte-mediated detoxification of potentially neurotoxic

molecules or the production of neurotrophic factors by astrocytes

(Richter et al., 2009). Likewise, anti-self CD8+ T cells may cause

bystander toxicity by acting on astrocytes expressing MHCI, the

cellular interaction causing death of hypocretin neurons. Bystander

neurotoxicity has also been observed to develop in the course of

the generation of cytotoxic CD8+ T cells that recognize virus

(e.g. JC virus) infected MHCI positive oligodendrocytes (for

review see Melzer et al., 2009). Another example of bystander

neurotoxicity is provided by studies using ovalbumin-specific

CD4+ T cells. These cells lead to a lethal MHCII- and

antigen-independent increase in neuronal calcium, which could

be prevented by blocking glutamate receptors and perforin

(Nitsch et al., 2004).

Neurotoxicity by CD4+ T cells may either be mediated by their

release of neurotoxic molecules, including interferon gamma

(IFNg), TNF and lymphotoxin � or be due to their ability to acti-

vate microglia to produce the aforementioned cytokines, as well

as radical oxygen intermediates, nitric oxide and glutamate

(Fig. 1) (Piani et al., 1992). TNF by itself is capable of inducing

largely unselective, high-conductance ion channels following

pH-dependent insertion into lipid bilayer or cell membranes

(Kagan et al., 1992; Baldwin et al., 1996). It is interesting

that in rat hypothalamic slice cultures the addition of

N-methyl-D-aspartate resulted in a marked decrease in the

number of hypocretin neurons, whereas neurons expressing

melanin-concentrating hormone were relatively spared (Katsuki

and Akaike, 2004). Quinolinic acid, a tryptophan metabolite

produced by the kynurenine pathway, possesses an agonist

activity on N-methyl-D-aspartic acid receptors and leads to select-

ive loss of hypocretin neurons. Microglia cells and blood-derived

monocytes/macrophages are prominent sources of quinolinic acid

(Stone, 2001). Hypocretin neurons express N-methyl-D-aspartic

acid receptors, the glutaminergic inputs regulating their electrical

activity (Li et al., 2002). In contrast to neurons expressing

melanin-concentrating hormone, hypocretin neurons are inhibited

by elevation of extracellular glucose, the effect being mediated

by two pore potassium (K2P) channels (Burdakov et al., 2006).

Differences of melanin-concentrating hormone neurons and hypo-

cretin neurons, which may result in selective killing of hypocretin

neurons, may also depend on ectopic expression of death recep-

tors including TNF receptor or Fas, or a high degree of sensitivity

towards proapoptotic signals. The latter may be due to the ab-

sence of anti-apoptotic intracellular molecules or of neuroprotec-

tive factors or their receptors. Regulation of apoptosis is central

in the neuroprotection and neurodegeneration (Okouchi et al.,

2007).

To assess T cell autoimmunity in narcolepsy, further work should

examine (i) whether there is a restricted usage of TCR genes;

(ii) whether T cell activation and neurotoxic effects of T cells

from patients are observed in co-cultures with immortalized hypo-

thalamic neurons transfected with HLA-DR2 genes; (iii) whether

signs of narcolepsy develop in humanized severe combined

immunodeficiency mice that express human HLA-DR2 genes

and are injected with reactivated CD4+ T cells from narcoleptic

patients; and (iv) whether monoclonal antibodies with streptococ-

cal reactivity can induce apoptosis of hypocretin neurons in vitro.

Superantigen-induced T cell
activation and neurotoxicity
An alternative model is that infectious pathogens in the hypo-

thalamus may express superantigens that bridge the TCR on

T cells with MHCII molecules expressed by cells such as microglia.

Bacterial or viral superantigens concentrate on the surface of

antigen presenting cells by binding to MHCII molecules and

then engage and crosslink multiple TCR molecules, resulting in

strong TCR signalling, T cell activation and cytokine production.

IFN-g released by superantigen activated T cells may lead to

neuronal excitotoxicity by intracellular trans-signalling between

the IFN-g receptor and a Ca2+- permeable neuronal �-amino-

3-hydroxyl-5-methyl-4-isoxazole-propionate/kainate receptor in

the absence of extracellular glutamate (Mizuno et al., 2008).

As a hypothesis, the narcolepsy associated polymorphism of the

TCR� locus, as well as DQB1*0602 on cells such as microglia,

might permit only a limited engagement of the TCR in the

superantigen-dependent process, and thereby cause only minimal
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Figure 1 Autoantibody, T lymphocyte and microglia induced killing of hypocretin neurons. (1) Hypocretin neurons may be destroyed by

autoantibodies such as Trib2 (Cvetkovic-Lopes et al., 2010) which are produced by B cells. (2) Priming of CD4+ T cells to self-antigens

presented to TCR by DQB1*0602 expressing antigen presenting cells (APC) including dendritic cells, monocytes, macrophages and

microglia cells leads to activation of B cells and of antigen presenting cells. The latter produce neurotoxic factors such as quinolinic acid,

glutamate, radical oxygen intermediates (ROI) and TNF-� (Katsuki and Akaike, 2004). (3) Since the significance of the expression of MHCI

(Continued)
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inflammation (Fig. 1). A stronger interaction would be inconsistent

with the limited pathology and destruction of only one type of

cell—the hypocretin neurons in the hypothalamus. Most superan-

tigens interact with TCR molecules by binding primarily to the

variable region of the b chain (for review: Fraser and Proft,

2008). It might thus seem unlikely that the recently observed

polymorphism in the TCR� locus could reflect the involvement

of superantigens in narcolepsy. However, there are also superanti-

gens that bind to alpha chains of the TCR. The staphylococcal

toxin staphylococcal enterotoxin H recognizes the variable region

of the TCR�-chain (V�27) (Pumphrey et al., 2007) and the myco-

plasma arthritidis mitogen consists of two �-helical bundles, one of

which binds orthogonally to the top of the MHCII�1-helix, peptide

and b1-helix (Zhao et al., 2004).

T cell-independent
MHCII-mediated neurotoxicity
In T cell-mediated diseases of the CNS, such as multiple sclerosis

or experimental autoimmune encephalomyelitis, the function of

MHCII is primarily that of antigen presentation by microglia and

macrophages. However, in conditions such as Huntington’s dis-

ease and Parkinson’s disease, or brain trauma, the aforementioned

types of cells express MHCII despite the fact that no evidence for

T cell involvement has been observed. In these diseases, upregula-

tion of MHCII in microglia cells may follow the ingestion of

apoptotic cells (Hellendall and Ting, 1997). Necrotic neurons

have been shown to activate microglia to upregulate MHCII, cost-

imulatory molecules CD40, CD24, b2 integrin, CD11b, inducible

nitric oxide synthetase and cytokines including TNF (Pais et al.,

2008). It has been suggested that an alternative role for MHCII

might involve signal transduction leading to activation, differenti-

ation and production of proinflammatory cytokines. Cuprizone-

induced oligodendrocyte dysfunction with T cell-independent

demyelination pathology is much less pronounced in MHCII

I� A�=��ðbetaÞmice, or in mice expressing a truncated I-A�(beta) chain

lacking a cytoplasmic domain. It is not clear yet how signalling by

MHCII molecules is activated in the absence of T cell function

(Matsushima et al., 1994; Hiremath et al., 2008). These findings

may be of relevance for narcolepsy. As a hypothesis, infectious

pathogens may have a tropism for hypothalamic hypocretin neu-

rons and thereby cause these neurons to activate microglia to

increase signalling via their MHCII molecules (Fig. 1). Activated

microglia induce neurotoxicity by releasing quinolinic acid or

through the upregulation of glutaminase, an enzyme that pro-

duces the N-methyl-D-aspartic acid receptor agonist glutamate

(Piani et al., 1991, 1992; Pais et al., 2008). The activation of

microglia by necrotic neurons was shown to be dependent on

the toll-like receptor-associated adaptor molecule myeloid differ-

entiation primary response gene (MyD88).

Conclusion
Autoimmunity, superantigen-mediated T cell activation and

non-T cell-mediated activation by MHCII signalling could be

involved in narcolepsy. Whereas HLA-DQB1*0602 might select

for recognition of self-antigens and thereby lead to autoimmunity,

the polymorphism of the TCR� (alpha) gene might be crucial

in superantigen-mediated T cell activation. The existence of

CD8+-mediated neuronal cell death has not yet been convincingly

proven in vivo. However, CD8+ induced damage of MHCI

expressing astrocytes or oligodendrocytes may be followed by

collateral toxicity to neurons. HLA-DQB1*0602 might be more

vulnerable to T cell-independent, MHCII-mediated activation of

macrophages and microglia. These cells have been shown to

release neurotoxic molecules including Fas ligand, proteases,

TNF, quinolinic acid, glutamate, radical oxygen intermediates

and nitric oxide. Selectivity of killing of hypocretin neurons may

be due to a high degree of sensitivity towards the aforementioned

cytotoxic molecules as has been shown with quinolinic acid. The

detection of an increased frequency of streptococcal infection in

narcolepsy may provide a hint for molecular mimicry and auto-

immunity or for the involvement of superantigens as initiators of

T cell activation. For the detection of anti-CNS antibodies and

activation of T cells/monocytes in the blood, future studies

should concentrate on patients with a newly diagnosed or very

recent onset of disease.
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Figure 1 Continued
molecules on neurons in vivo is still a matter of debate, the contribution of CD8+ T cell-mediated killing of neurons remains open.

However there is evidence for CD8+ T cell-mediated antigen-dependent interaction with MHCI expressing astrocytes (A) or oligo-

dendrocytes (O) which as reported may result in damage of these glial cells and collateral toxicity of neurons (Melzer et al., 2009; Richter

et al., 2009). (4) Neurotoxic molecules may also be released by antigen presenting cells that bind bacterial or viral superantigens via MHCII

molecules. Crosslinking of TCRs on T cells leads to release of neurotoxic molecules including interferon gamma (IFN-g) and TNF. (5)

Activation of microglia cells or other antigen presenting cells including dendritic cells and monocyte derived macrophages may also be

mediated by signalling through MHCII molecules in the absence of T cells (Matsushima et al., 1994; Hiremath et al., 2008). The ligand,

which binds to MHCII as well as the origin of the ligand (hypocretin neurons?), are not known. MHCII-mediated activation of antigen

presenting cells leads to the release of neurotoxic molecules.
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