275 research outputs found

    Visually Induced Plasticity of Auditory Spatial Perception in Macaques

    Get PDF
    AbstractWhen experiencing spatially disparate visual and auditory stimuli, a common percept is that the sound originates from the location of the visual stimulus, an illusion known as the ventriloquism effect [1]. This illusion can persist for tens of minutes, a phenomenon termed the ventriloquism aftereffect [2–5]. The underlying neuronal mechanisms of this rapidly induced plasticity remain unclear; indeed, it remains untested whether similar multimodal interactions occur in other species. We therefore tested whether macaque monkeys experience the ventriloquism aftereffect similar to the way humans do. The ability of two monkeys to determine which side of the midline a sound was presented from was tested before and after a period of 20–60 min in which the monkeys experienced either spatially identical or spatially disparate auditory and visual stimuli. In agreement with human studies, the monkeys did experience a shift in their auditory spatial perception in the direction of the spatially disparate visual stimulus, and the aftereffect did not transfer across sounds that differed in frequency by two octaves. These results show that macaque monkeys experience the ventriloquism aftereffect similar to the way humans do in all tested respects, indicating that these multimodal interactions are a basic phenomenon of the central nervous system

    Age-related neurochemical changes in the rhesus macaque inferior colliculus

    Get PDF
    Age-related hearing loss (ARHL) is marked by audiometric hearing deficits that propagate along the auditory pathway. Neurochemical changes as a function of aging have also been identified in neurons along the auditory pathway in both rodents and carnivores, however, very little is known about how these neurochemicals change in the non-human primate. To examine how these compensatory neurochemical changes relate to normal aging and audiometric sensitivity along the auditory pathway, we collected auditory brainstem responses (ABRs) and brain specimens from seven rhesus monkeys spanning in age from 15 to 35 years old, and examined the relationship between click evoked ABR thresholds and the ABR evoked pure tone average (PTA) and changes in the number of parvalbumin and NADPH-diaphorase positive cells in the auditory midbrain. We found that the number of parvalbumin positive cells in the central nucleus and the surrounding cortex regions of the inferior colliculus were strongly correlated with advancing age and ABR PTA. We also found that the numbers of NADPHd positive cells in these same regions were not associated with normal aging or changes in the ABR thresholds. These findings suggest that the auditory midbrain undergoes an up-regulation of parvalbumin expressing neurons with aging that is related to changes in the processing of frequencies across the audiometric range

    The relationship between magnetic and electrophysiological responses to complex tactile stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetoencephalography (MEG) has become an increasingly popular technique for non-invasively characterizing neuromagnetic field changes in the brain at a high temporal resolution. To examine the reliability of the MEG signal, we compared magnetic and electrophysiological responses to complex natural stimuli from the same animals. We examined changes in neuromagnetic fields, local field potentials (LFP) and multi-unit activity (MUA) in macaque monkey primary somatosensory cortex that were induced by varying the rate of mechanical stimulation. Stimuli were applied to the fingertips with three inter-stimulus intervals (ISIs): 0.33s, 1s and 2s.</p> <p>Results</p> <p>Signal intensity was inversely related to the rate of stimulation, but to different degrees for each measurement method. The decrease in response at higher stimulation rates was significantly greater for MUA than LFP and MEG data, while no significant difference was observed between LFP and MEG recordings. Furthermore, response latency was the shortest for MUA and the longest for MEG data.</p> <p>Conclusion</p> <p>The MEG signal is an accurate representation of electrophysiological responses to complex natural stimuli. Further, the intensity and latency of the MEG signal were better correlated with the LFP than MUA data suggesting that the MEG signal reflects primarily synaptic currents rather than spiking activity. These differences in latency could be attributed to differences in the extent of spatial summation and/or differential laminar sensitivity.</p

    Factors Affecting Frequency Discrimination of Vibrotactile Stimuli: Implications for Cortical Encoding

    Get PDF
    BACKGROUND: Measuring perceptual judgments about stimuli while manipulating their physical characteristics can uncover the neural algorithms underlying sensory processing. We carried out psychophysical experiments to examine how humans discriminate vibrotactile stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Subjects compared the frequencies of two sinusoidal vibrations applied sequentially to one fingertip. Performance was reduced when (1) the root mean square velocity (or energy) of the vibrations was equated by adjusting their amplitudes, and (2) the vibrations were noisy (their temporal structure was irregular). These effects were super-additive when subjects compared noisy vibrations that had equal velocity, indicating that frequency judgments became more dependent on the vibrations' temporal structure when differential information about velocity was eliminated. To investigate which areas of the somatosensory system use information about velocity and temporal structure, we required subjects to compare vibrations applied sequentially to opposite hands. This paradigm exploits the fact that tactile input to neurons at early levels (e.g., the primary somatosensory cortex, SI) is largely confined to the contralateral side of the body, so these neurons are less able to contribute to vibration comparisons between hands. The subjects' performance was still sensitive to differences in vibration velocity, but became less sensitive to noise. CONCLUSIONS/SIGNIFICANCE: We conclude that vibration frequency is represented in different ways by different mechanisms distributed across multiple cortical regions. Which mechanisms support the “readout” of frequency varies according to the information present in the vibration. Overall, the present findings are consistent with a model in which information about vibration velocity is coded in regions beyond SI. While adaptive processes within SI also contribute to the representation of frequency, this adaptation is influenced by the temporal regularity of the vibration

    Improved Methods for Acrylic-Free Implants in Non-Human Primates for Neuroscience Research

    Get PDF
    Traditionally, head fixation devices and recording cylinders have been implanted in nonhuman primates (NHP) using dental acrylic despite several shortcomings associated with acrylic. The use of more biocompatible materials such as titanium and PEEK is becoming more prevalent in NHP research. We describe a cost effective set of procedures that maximizes the integration of headposts and recording cylinders with the animal’s tissues while reducing surgery time. Nine rhesus monkeys were implanted with titanium headposts, and one of these was also implanted with a recording chamber. In each case, a three-dimensional printed replica of the skull was created based on computerized tomography scans. The titanium feet of the headposts were shaped, and the skull thickness was measured preoperatively, reducing surgery time by up to 70%. The recording cylinder was manufactured to conform tightly to the skull, which was fastened to the skull with four screws and remained watertight for 8.5 mo. We quantified the amount of regression of the skin edge at the headpost. We found a large degree of variability in the timing and extent of skin regression that could not be explained by any single recorded factor. However, there was not a single case of bone exposure; although skin retracted from the titanium, skin also remained adhered to the skull adjacent to those regions. The headposts remained fully functional and free of complications for the experimental life of each animal, several of which are still participating in experiments more than 4 yr after implant

    Cross-Modal Distortion of Time Perception: Demerging the Effects of Observed and Performed Motion

    Get PDF
    Temporal information is often contained in multi-sensory stimuli, but it is currently unknown how the brain combines e.g. visual and auditory cues into a coherent percept of time. The existing studies of cross-modal time perception mainly support the “modality appropriateness hypothesis”, i.e. the domination of auditory temporal cues over visual ones because of the higher precision of audition for time perception. However, these studies suffer from methodical problems and conflicting results. We introduce a novel experimental paradigm to examine cross-modal time perception by combining an auditory time perception task with a visually guided motor task, requiring participants to follow an elliptic movement on a screen with a robotic manipulandum. We find that subjective duration is distorted according to the speed of visually observed movement: The faster the visual motion, the longer the perceived duration. In contrast, the actual execution of the arm movement does not contribute to this effect, but impairs discrimination performance by dual-task interference. We also show that additional training of the motor task attenuates the interference, but does not affect the distortion of subjective duration. The study demonstrates direct influence of visual motion on auditory temporal representations, which is independent of attentional modulation. At the same time, it provides causal support for the notion that time perception and continuous motor timing rely on separate mechanisms, a proposal that was formerly supported by correlational evidence only. The results constitute a counterexample to the modality appropriateness hypothesis and are best explained by Bayesian integration of modality-specific temporal information into a centralized “temporal hub”

    Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys

    Get PDF
    We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals. We analyzed the discharge of 108 MSTd neurons responding to visual motion stimuli. The majority (69/108 = 64%) were also modulated during smooth pursuit. However, in nearly all (104/108 = 96%) of the MSTd neurons tested, there was no significant discharge modulation during the delay periods that required memory of visual motion-direction or preparation for smooth pursuit or not-to-pursue. Only 4 neurons of the 108 (4%) exhibited significantly higher discharge rates during the delay periods; however, their responses were non-directional and not instruction specific. Representative signals in the MSTd clearly differed from those in the SEF during memory-based smooth pursuit. MSTd neurons are unlikely to provide signals for memory of visual motion-direction or preparation for smooth pursuit eye movements
    corecore