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ABSTRACT 
Traditionally, head fixation devices and recording cylinders have been implanted in non-human primates 

(NHP) using dental acrylic, in spite of several shortcomings associated with acrylic. The use of more 

biocompatible materials such as titanium and PEEK is becoming more prevalent in NHP research. We 

describe a cost-effective set of procedures that maximizes the integration of headposts and recording 

cylinders with the animal’s tissues while reducing surgery time. Nine rhesus monkeys were implanted 

with titanium headposts and one of these was also implanted with a recording chamber. In each case, a 3D 

printed replica of the skull was created based on computerized tomography scans. The titanium feet of the 

headposts were shaped and the skull thickness measured pre-operatively, reducing surgery time by up to 

70%. The recording cylinder was manufactured to conform tightly to the skull, which was fastened to the 

skull with 4 screws and remained watertight for 8.5 months. We quantified the amount of regression of 

the skin edge at the headpost. We found a large degree of variability in the timing and extent of skin 

regression that could not be explained by any single recorded factor. However, there was not a single case 

of bone exposure: while skin retracted from the titanium, skin also remained adhered to the skull adjacent 

to those regions. The headposts remained fully functional and free of complications for the experimental 

life of each animal, several of which are still participating in experiments over 4 years after implant. 

NEW & NOTEWORTHY 
Cranial implants are often necessary for performing neurophysiology research with nonhuman primates. 

We present methods for using 3D printed monkey skulls to form and fabricate acrylic-free implants pre-

operatively in order to decrease surgery times and the risk of complications and increase the functional 

life of the implant. We focused on reducing costs, creating a feasible timeline, and ensuring compatibility 

with existing laboratory systems. We discuss the importance of using more biocompatible materials and 

enhancing osseointegration. 

INTRODUCTION 
Nonhuman primates (NHP) are indispensable animal models of human biology and medicine and are used 

in a wide range of fields, including immunology, microbiology, and genetics. In neuroscience, research 

with NHP has furthered our understanding of normal neuronal functioning such as sensory processing 

(e.g., Goodale and Milner 1992; Parker and Newsome 1998; Sunkaraa et al., 2016), motor control (e.g., 

Mink 1996; Plautz et al. 2000; Graziano et al. 2002; Hwang et al., 2013), learning and memory (e.g., 

Squire and Zola-Morgan 1991; Miller and Cohen 2001; Konecky et al., 2017), and attention (e.g., 

Desimone and Duncan 1995; Luck et al. 1997; Verhoefl and Maunsell, 2017). Similarly, NHP research 
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has provided invaluable insights into neurological disorders such as Parkinson’s disease (e.g., Fearnley 

and Lees 1991; Bergman and Deuschl 2002; Potts et al., 2014), cognitive impairment (e.g., Burke and 

Barnes 2006; Morrison and Baxter 2012), and stroke (e.g., Nudo and Milliken 1996; Nudo et al. 1996; 

Fan et al., 2017). A valuable technique in neuroscience research involves recording or manipulating 

neuronal activity in NHP while they are alert and performing a behavioral or perceptual task. Such studies 

were initiated about 50 years ago (e.g., Wurtz 1968), and continue to this day in a variety of both cortical 

and sub-cortical brain areas. This research relies on chronic cranial implants. One implant, the headpost 

(see Figure 1), allows the researcher to stabilize the animal’s head during behavioral training and 

experimentation. A cranial implant may also consist of one or more recording chambers, which allows the 

researcher to gain access to the brain for recording data or other experimental manipulations such as 

microstimulation or local inactivation. Head fixation is essential for physiological recording and 

important for maintaining head position in many sensory experiments, particularly those involving the 

visual or auditory systems. Thus, headpost and recording chamber implants are an integral part of many 

avenues of neuroscience research in NHP. 

Polymethyl methacrylate (PMMA, alternatively called “acrylic”, “dental acrylic” or “bone cement”) is the 

most popular method of affixing cranial implants to the skull, primarily due to the ease with which it can 

be modelled in situ to form a customized fit (see Adams et al., 2011). In this technique, the skull is 

exposed and screws are placed in the skull around the position of the implanted headpost and/or recording 

cylinder(s). The implant hardware is held in place with a stereotaxic manipulator while the PMMA is 

mixed and poured onto the exposed skull to cover the screws and part of the implant hardware. Once 

cured, the PMMA mass secures the implant hardware, anchored to the skull via the bone screws.  This 

technique has been used extensively, primarily because it is low cost, and can be customized to individual 

NHPs depending on the location of the headpost and the number of recording cylinders. Additionally, it is 

radio transparent, and with non-ferrous screws and other components of the implant can allow for 

subsequent MRI imaging to verify cylinder placement, etc. Finally, in some instances pre-surgical 

imaging may not be possible, or novel hardware may need to be incorporated into an existing implant, in 

which case the acrylic method allows for some flexibility during surgery.  

Nonetheless, this technique presents several common problems. The acrylic that supports the headpost 

(see Figure 1A) can be gradually weakened with time and use and is prone to breakage, potentially 

leading to exposure of the underlying bone. Also, an infection underneath the acrylic implant can lead to a 

dramatic thinning of the underlying bone and enlargement of the screw holes and craniotomy sites (see 

Fig. 1 in Adams et al. 2011), and may lead to implant failure. Implant breakages and infections require 
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repair or removal and replacement of the implant, which puts the animal at increased risk due to 

additional procedures and halts the progress of research. 

Creating the implant during surgery is time-consuming and requires considerable expertise to do properly. 

The NHP acrylic implant is formed intraoperatively by mixing PMMA powder with liquid methyl 

methacrylate (MMA); the mixture is then poured over the exposed skull. One challenge is that the acrylic 

must be poured smoothly without introducing bubbles or fissures, and yet prevented from leaking to 

tissue outside of the intended implant boundary or into craniotomies where the recording chambers are 

being positioned. It is thought that crevices introduced into the acrylic when it is poured may harbor 

bacteria and lead to infection. The viscosity of the PMMA/MMA mixture when it is poured can be 

controlled by the surgeon depending on the time elapsed from the initial mixture. The polymerization 

reaction during the curing process is exothermic, reaching temperatures up to 110°C, which can lead to 

necrosis of surrounding tissue (Leggat et al. 2009) if not cooled continuously with saline (Genest 1978). 

Although different additives, such as castor oil (Lopez et al., 2011; Tai et al., 2016) or pre-cooling (Lai et 

al., 2012; Tai et al., 2016) can reduce this maximum temperature to around 60°C, this is still hot enough 

to cause necrosis (Gergely et al., 2016). To allow the NHP implant to cool sufficiently, it must be built 

very gradually with several small batches of acrylic. The process of building up and cooling the acrylic 

often accounts for >50% of the duration of the surgery. Therefore, there is a need for an implant 

technique that is technically less challenging for the researcher to perform, decreases surgery times and 

reduces the risk of complications such as infection and heat damage. 

Use of PMMA is valuable in the operating room with human patients, but use in humans raises a number 

of concerns as well. PMMA is the most commonly used material for cranioplasty (repairing craniectomies 

or cranial defects) in humans because it is sufficiently durable, radiologically transparent and easy to 

mold and modify while being relatively inexpensive (Lee et al. 2009; Aydin et al. 2011; Caro-Osorio et 

al. 2013).  Human cranioplasty is sometimes performed in a manner similar to the NHP implant, where 

the PMMA/MMA mixture is poured over the dura mater during surgery. Caro-Osorio et al. (2013) 

reported overall PMMA-cranioplasty-associated complications in human patients to be between 9.2 - 

23%, with infection being the main concern, reported in 9.2 - 19% of cases. Pre-molding PMMA implants 

has been found to significantly decrease rates of infection (Lee et al. 2009; Caro-Osorio et al., 2013) as 

well as operation times (40 mins faster; Lee et al. 2009). Unfortunately, prefabrication of an acrylic 

implant for NHP research would void the primary advantage for using acrylic, which is the ability to pour 

and form in situ and thus achieve a perfect fit. However, pre-fabricating implants is a practicable way to 

decrease surgery times which is known to decrease the risk of surgical site infections (Mangram et al. 

1999; APIC 2010). 
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An important difference between the human cranioplasty and NHP acrylic implant techniques is how they 

impact surrounding soft tissues, particularly the skin. Whereas the cranioplasty is covered with muscle 

and skin and resides entirely within the body, the percutaneous primate implant introduces an implant 

margin (Fig. 1A) that is an avenue to infection and must be cleaned and maintained frequently. Also, 

residual chemicals in the PMMA matrix may be toxic, for example the monomer form of acrylic, MMA, 

is known to be a skin and respiratory irritant and is cytotoxic in many cases, including to endothelial cells 

(Leggat et al. 2009) which may lead to irritation at the implant margin. A related factor with respect to the 

skin in NHP acrylic implants is granulation tissue, a highly vascular connective tissue that is a normal 

part of wound healing but obstructive to a healthy percutaneous implant margin. It proliferates along the 

implant margin and in some cases, grows between the acrylic implant and the bone, weakening the 

implant. Therefore, an implant technique that preserves the integrity of soft tissue and decreases 

maintenance and implant margin complications would be a marked improvement. While PMMA is a 

versatile material that is still used in humans, there are a variety of newer, more biocompatible materials 

being used in cranioplasty and a variety of other human implants that overcome some of the limitations 

discussed above. 

Choosing an implant material depends on the properties of the material (e.g., strength, durability and 

biocompatibility) as well as on the specific application and stresses that will be exerted on the implant. 

For example, dental implants must withstand years of repetitive use and forces such as from chewing 

(Mandracci et al. 2016). Because of titanium’s good biocompatibility, strength and ability to form a tight 

bond with bone tissue, or osseointegrate (Albrektsson et al. 1981; Tjellström et al. 1981), it is the material 

of choice for implant dentistry. Osseointegration is the preferred method of fixation for load-bearing 

implants in orthopedics and orthodontics (Hacking et al. 2012). For these reasons, titanium is an excellent 

material for use in NHP headpost implants. 

When using an acrylic-free titanium implant it is important to consider factors that can encourage or 

impede osseointegration. Titanium integrates best with bone when it is tightly apposed to the bone 

surface, therefore it is critical to achieve as close a fit as possible (<1 mm) and maximize contact between 

bone and metal surfaces (Plecko et al. 2012). Modifying surface characteristics, such as roughening the 

implant surface can also improve osseointegration (Buser et al. 1991; Hacking et al. 2012). Application of 

hydroxyapatite (HA) as a paste during surgery (e.g., Adams et al. 2011) or as a coating applied to the 

titanium implant prior to surgery (Hacking et al. 2012; Mandracci et al. 2016) can further aid 

osseointegration. 
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Another highly biocompatible material, polyetheretherketone (PEEK), is a thermoplastic that is gaining in 

popularity for uses such as vertebra and hip replacements. PEEK has mechanical properties similar to 

bone and is not toxic to surrounding tissues. Unfortunately, PEEK does not integrate well with bone 

(Khoury et al. 2013; Ma and Tang 2014) and therefore is not ideal for load-bearing applications such as a 

headpost. However, PEEK has the advantage of being radiologically transparent, and therefore is 

preferred in applications where imaging of nearby tissues is required. This makes it a suitable material for 

non-load-bearing implants such as the recording chamber (Fig. 1). Whereas the recording chamber is 

traditionally embedded in the acrylic implant (Fig. 1A), recent studies have used an acrylic-free PEEK 

recording chamber for NHP neuroscience research (McAndrew et al. 2012; Lanz et al. 2013). 

ADOPTION OF ACRYLIC-FREE ALTERNATIVES

The use of acrylic-free implants using more biocompatible materials in NHP neurophysiology research is 

gaining popularity. Several attempts have been made to avoid the use of acrylic-embedded head-fixation 

devices in NHP research (Isoda et al. 2005; Adams et al. 2007; Davis et al. 2009; Lanz et al. 2013) or to 

eliminate the need for an invasively implanted cranially anchored fixation device entirely (Amemori et al. 

2015; Drucker et al. 2015). Adams and colleagues developed a custom titanium footed headpost (2007) 

and recording chamber (2011) which were successfully implanted in several animals. McAndrew and 

colleagues (2012) designed a custom-fitted PEEK recording chamber that was screwed directly to the 

skull with titanium screws. Lanz and colleagues (2013) used Adams’ headpost design, and designed a 

customized PEEK recording chamber using 3D printed skulls to aid in surgical planning. Acrylic-free 

titanium and PEEK implants are used exclusively at the Max Plank Institute for Biological Cybernetics 

(http://hirnforschung.kyb.mpg.de/en/methods/implant-technology.html). Despite these successes, the 

adoption of this new technique across other primate laboratories is slow. Given that cost and time 

constraints are potential factors to adoption, we focused on cost reduction and streamlining the timeline 

for implanting an acrylic-free titanium headpost and PEEK recording chamber. 

Our goal was to devise a method for implanting monkeys with an acrylic-free implant while shortening 

surgery times, minimizing costs, and focusing on the ease of compatibility with existing systems. We 

drew on previous reports describing footed titanium headposts (Adams et al., 2007), a PEEK recording 

chamber (McAndrew et al. 2012) and the use of 3D printed skulls to guide surgical planning (Lanz et al. 

2013). While our focus was on streamlining methods for an acrylic-free headpost, we also designed and 

implanted a custom-fitted PEEK recording chamber in one case. Special attention was paid to 

compatibility with existing systems, so we applied these methods with minor modifications in three 

http://hirnforschung.kyb.mpg.de/en/methods/implant-technology.html
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different laboratories that used slightly different hardware systems. We discuss these differences and 

compatibility issues where appropriate. 

MATERIALS AND METHODS 
Given our goal of reducing surgery times and the risk of complications, our methods focused on the pre-

fabrication of implanted hardware using biocompatible materials. Briefly, we used a computed 

tomography (CT) scan of each animal’s head to create a 3D printable digital model of the skull. The feet 

of the titanium headposts were bent prior to surgery to conform to a particular 3D printed skull replica. 

Magnetic resonance imaging (MRI) was also conducted and the CT and MRI data were co-registered to 

plan recording chamber locations. A recording chamber was designed using computer-aided design 

(CAD) software to mate perfectly with the skull in the desired location and 3D printed in PEEK. Our 

focus was on reducing costs without sacrificing quality or expediency and maintaining compatibility with 

existing experimental hardware. A summary and timeline of headpost-related procedures are provided in 

Table 1 and Figure 2, respectively. Here we describe how these methods were achieved. 

SUBJECTS 

We implanted 9 rhesus macaques (Macaca mulatta; 5 females, 4 males) with titanium footed headposts 

using the procedures that follow with slight variations between animals. Important differences between 

procedures used in cases are noted where appropriate. Rhesus macaques in this study ranged in age from 

5.6 to 29.3 years at the time of implant surgery, corresponding to ~17 to ~88 human years (macaques age 

at approximately three times the rate of humans; Davis and Leathers 1985). Animals ranged in weight 

from 6 kg (female, case #5) to 13.5 kg (male, case #3), with most animals weighing 8 to 9 kg. Refer to 

Table 2 for information on each individual subject. 

CT AND MRI SCANS

A CT scan of each animal’s head was used to generate a digital model and physical replica of the skull to 

use for surgical planning and pre-fabrication of cranial implants. Note that the term “replica” will be used 

to refer to the physical 3D printed object, whereas “model” will be used when referring to the digital 

model or STL file. Scans were taken on a LightSpeed16 (General Electric) using 0.6 mm sequential 

slices. CT scans were obtained less than 6 months prior to planned surgeries. If more than 6 months had 

lapsed between an animals’ CT scan and the implant surgery, the CT scans were repeated. In these cases, 

the second CT scan showed significant bone remodeling and changes to the skull surface topography, 

ultimately justifying the decision to repeat the scan. See Table 1 for timing of final CT scans relative to 
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surgeries and the duration that the animal had the headpost. In many cases we were able to complete the 

CT and have the digital model ready to print within one to two days (see Table 1 and Figure 2). In two 

cases, CT scans and surgeries were scheduled just two weeks apart, which was sufficient time to complete 

all steps. It should be noted that in many cases, the surgery date was delayed for reasons not related to 

implant readiness. 

Structural MRIs were collected for 5 subjects in order to aid in localization of electrophysiology and 

stimulation targets within the brain. MRI scans were taken on a 3T Sigma Skyra scanner machine using 

T1 and T2 weighted sequence, 0.7-mm isotropic resolution. Copper sulfate was used as an MRI marker 

inside reservoirs of ear bars and eye bars of a MRI compatible stereotaxic frame (Kopf) in order to co-

register MRI with CT data (iodine can be used as a marker in CT scans, but is not necessary). Timing of 

MRI scans varied (data not shown) from 6 months prior to headpost implant surgery up to 1.5 years 

following headpost implant (titanium is MRI compatible but an artifact from the metal will be evident in 

the scan). 

CREATE 3D PRINTABLE DIGITAL MODEL FROM CT DATA 

We sought to create a 3D-printed 1:1 replica of a monkey’s skull using the cheapest and quickest methods 

possible for the purpose of surgical planning and forming cranial implants preoperatively. Thus, we used 

free software wherever possible. All data processing was performed initially on a PC (Windows 7, 3.0 

GHz, 6.0 GB RAM) and later performed on other PCs and MacOS machines. There are many options 

available to convert medical imaging data such as CT or MRI into a digital 3D model. Some tools 

perform the required steps (briefly, segmenting the desired structure from the surrounding data in each 

imaging slice, capturing that surface and integrating across slices to generate a 3D surface) almost 

automatically. McAndrew and colleagues (2012) used Mimics software to generate a digital model of the 

skull surface. At the time that we initiated these studies, Mimics was quoted at over $20,000 after a 50% 

academic discount. Lanz and colleagues (2013) used OsiriX software ($699 at that time; currently, free 

option includes the necessary features, available for MacOS only) to create 3D printable skull models 

based on CT. Other software options (mostly free and open source) that we vetted but did not use include: 

Analyze (trial version), 3D-Doctor (trial version), BrainSuite, FreeSurfer, and 3D-Slicer. DeVIDE is an 

open source 3D visualization and image processing software tool (Botha 2006). Ultimately, we found that 

DeVIDE worked best for our needs at the time: in addition to being open-source, DeVIDE’s graphical 

interface was intuitive to learn and use (especially given available online tutorials), and performed the 

required steps quickly and accurately. Other options, including those mentioned, may be just as good if 

not better than DeVIDE depending on the needs of the individual laboratory. Furthermore, this is a 
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rapidly evolving field and tools are constantly being developed; for example, the authors have recently 

begun using InVesalius (free, open-source) for this process with excellent results. 

We also attempted to segment bone from MRI data with Analyze and BrainSuite, which could make a CT 

scan unnecessary. Whereas this was possible using both programs, bone segmentation in MRI was more 

difficult and required far greater processing time compared to extracting bone surface information from 

CT scan data. Crucially, results were not completely reliable. Note that new MRI parameters have been 

shown to provide accurate bone segmentation (Eley et al. 2012, 2014, 2017), however these methods 

were not available to the authors at the time. In BrainSuite (an open-source MRI processing tool), for 

example, the outer surface of the bone segmentation from MRI data was good, but the segmentation of 

bone from underlying tissue was inaccurate, compromising information about the skull thickness. 

Ultimately, we decided that the additional cost and time of a CT scan relative to an MRI scan was worth 

the confidence in the accuracy of our 3D model in addition to the ease of software processing. CT also 

provided information about bone integrity, which was desirable in cases that had been previously 

implanted with acrylic. For example, it is common for acrylic implants to lead to thinning of the skull 

underneath the implant that would affect placement of or even delay a subsequent implant. In each case, 

the most recent CT scan was used to create a 3D model of the skull. 

There are several file formats that produce a 3D-printable model. However, STL (“Surface Tessellation 

Language”, or “STereoLithograpy”) format is the most widely used and supported format for rapid 

prototyping. Following the procedures provided in an online video tutorial (Botha 2010), we extracted the 

surface model of a rhesus macaque skull. With little practice this process can be completed in less than an 

hour (even faster using InVesalius). Briefly, DICOM files (CT data) were imported into DeVIDE. 

Thresholds were chosen to segment bone from the remainder of tissue and select only bone in the CT 

data, then a seed point within the bone was chosen so that only bone connected to that seed remained in 

the model. Finally, the skull model was exported from DeVIDE as an STL file that could then be repaired 

and checked in a 3D modeling software as described below. 

CROPPING AND REPAIRING STL 

In order to print the relevant dorsal portion of the skull, STL models were cropped and repaired using 

MeshLab (free, open source) or NetFabb Basic (free, Autodesk). MeshLab has more advanced 

functionality but was less intuitive and more difficult to learn. We found NetFabb to be more user friendly 

and easier to learn to perform the required steps. There are many 3D printing software tools available and 

tools are being produced or improved upon continuously. Any tool with “STL slicer” and “STL repair” 
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functionality will suffice. Note that we may have used older versions than what is currently available, but 

the general steps should be comparable. 

We cropped STL skull models in a horizontal plane so that the printed skull replica would have a flat 

bottom. This was done for two reasons: 1) so that the printed skull would rest on a flat surface to make 

working with it as a planning tool easier, and 2) to save on cost of printing material, reducing printing 

costs from 25% to 50%. Apart from the dorsal surface of the skull that is necessary for surgical planning, 

other anatomical features of the skull are helpful as points of reference. In general, the orbits and auditory 

meatuses were preserved and used for this purpose. In some cases, a horizontal cut in the STL file parallel 

to the stereotaxic axis formed by the bottom of the orbits (eye bars) and auditory meatuses (ear bars) was 

made so that the skull was oriented on the workbench during planning as it would be in the surgery suite. 

In other cases, a portion of the face and upper jaw were printed so that the replica could be mounted in a 

stereotaxic frame as with a real head (as in Fig. 3B). 

Because the STL is a model of surface geometry created by connecting a point-cloud with lines to 

generate triangles, any discontinuities in the surface that are created by cuts will result in a zero volume 

and will render the model unprintable; the surface must be completely closed (termed “watertight” in the 

industry) in order to obtain a viable print. Holes created upon cutting the model along the desired plane 

above were closed using NetFabb Basic or MeshLab (this process is much easier in NetFabb). In 

NetFabb, triangles were added to create bridges and simplify complex holes, and then the auto-repair 

function was used to close holes. Next, “floaters” were eliminated by selecting the model then inverting 

selection so that floating or non-connected points could be deleted. NetFabb Basic’s interface makes it 

easy to determine when the model is a single closed shell, and thus complete and printable. Finally, the 

model was exported as STL to save all changes. STL does not have a standard system of units, so it is 

important to note the units used in the original DICOM (e.g., mm) to avoid inappropriate scaling at the 

time of printing. Using DeVIDE, units are automatically interpreted from the DICOM files and applied to 

the STL. 

PRINTING THE SKULL REPLICA 

There are many different types of additive manufacturing (3D printing), which refers to the process of 

building an object (or “part”) by adding material layer upon layer. The International Standards 

Organization currently identifies seven different categories of additive processes (ISO/TC 261 2015), that 

can be loosely classified into three broad groups: solid-based, liquid-based, and powder-based. We used 

powder and liquid-based printers that were available to us through our campus services and describe the 

outcome of each below. 3D printing was performed by the Engineering Fabrication Laboratory (EFL; 
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ZPrinter model 450 powder system; 95-μm layer; 300 x 300 x 450 dpi resolution) through the

Engineering Department as well as by the Translating Engineering Advances to Medicine lab (TEAM; 

Stratasys Objet Eden 260V; 16-μm layer; 600 x 600 x 1600 dpi) through the Department of Biomedical 

Engineering, both on the UC Davis campus. For our purposes, the accuracy of the 3D-printed replica and 

therefore the resolution of the printer was our main concern. The ability to draw or mark the replica 

surface was also convenient for use as a planning tool. 

Our first skulls were printed on a ZPrinter model 450 (Fig. 3A and B), a powder-based system where a 

bonding agent is printed layer-by-layer onto a bed of powder (“binder jetting” process; ISO/TC 261 

2015). The powder itself also serves as a support material as the part is built. The 3D replica off the 

printer is relatively fragile and requires cleaning with compressed air within a specialized hood to remove 

excess powder. After the part is cleaned, it is bathed in an infiltrant which finishes the curing process and 

strengthens the replica. A problem with this approach is that if the replica is not cleaned sufficiently, then 

any leftover support powder will become cured to the print by the infiltrant, decreasing accuracy of the 

replica. This presents a problem if there are small or fragile features such as previous screw holes, 

thinning of the skull or protuberances that might be present in an animal previously implanted with 

acrylic. Also, special attention should be paid to cleaning small crevices, such as the auditory meatus, 

which is necessary for compatibility with stereotaxic frames, as they can become clogged. Despite these 

concerns, the resolution of the replica was sufficient for accurate bending of headpost feet prior to 

surgery. Additionally, the white matte finish surface of this material was easy to mark with pencil during 

surgical planning (e.g., Fig. 3B). 

Several of our skull replicas were printed using the Stratasys Objet Eden 260V (Fig. 3C and D), which is 

a liquid-based photopolymer printing system (“material jetting”; ISO/TC 261 2015). The Objet Eden 

260V uses a photopolymer jetting technology (“polyjet”) that can print a variety of materials with 

different mechanical and optical properties. In contrast to the powder system, this printer extrudes a gel-

like support material that is cleaned from the final model with water in a pressure washing chamber. An 

advantage of this printing system, in addition to superior printing resolution (up to 30 µm accuracy in 16-

µm layers), is that the support material does not require an infiltrant and is never inadvertently cured as 

part of the solid print, so the post-processing steps such as cleaning are not likely to introduce errors. In 

the case of the Stratasys Objet260, the choice of material will determine the strength and finish of the 

printed part. In our case, the stronger “VeroWhite” plastic (a proprietary acrylic-based photopolymer) 

produced a glossy finish which was easily marked with a felt pen that could be erased with alcohol. 
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Ultimately, both models of printers and printing methods, the binder jetting and polyjet printing systems, 

were successful for our application. Stereolithography, (SL or SLA, a photopolymerization method) is 

another common system that would produce acceptable results in most cases. Fusion deposition modeling 

(FDM, a material extrusion method) is the most common type of 3D-printing system available and is not 

accurate enough in most cases for this application. Regardless of the printing system, we recommend 

choosing a printer with a minimum accuracy of 85 μm (300 dpi) based on our experience with the printers 

described above. Skull replicas from both printers were sterilized with Sterrad gas prior to surgery. 

DETERMINING LOCATION OF HEADPOST AND RECORDING CHAMBERS 

Headposts are typically implanted well in advance of recording chambers because it can take many 

months before a primate is fully trained on a behavioral task, which often requires head fixing. Waiting to 

implant recording chambers in a second surgery reduces the chance of infection and postpones the need 

for a cleaning regimen. Additional healing time (from 4-12 weeks, discussed below) allows the titanium 

of the headpost to osseointegrate adequately before attempting to restrain the animal’s head. Despite the 

potentially long period of time between headpost and recording chamber surgeries, it is important to plan 

recording chamber locations early so that headpost feet do not impinge on future surgical sites, 

particularly craniotomy locations. However, note that it is possible to remove a headpost foot if necessary, 

as was done in case #2, at 3.5 years post-implant without complication. Whereas in most cases this 

planning can be done very roughly (e.g., when all regions of interest are rostral to or caudal to the central 

sulcus), in some cases it is necessary to plan locations of recording chambers more precisely in order to 

constrain the headpost location (e.g., when more than one chamber will be implanted). Precise 

localization of the recording chambers is also necessary when designing an acrylic-free recording 

chamber because the contour of the chamber will conform to the cranial surface and therefore must be 

implanted in that precise location (as opposed to the acrylic-embedded recording chamber where the 

surgeon can choose the exact location of the chamber intraoperatively). In case #1, target locations were 

determined by using the patterns on the inside of the skull model as a proxy for gyri and sulci; this is a 

fast solution for determining targets on the cortical surface but not possible for deeper structures (Fig. 

3B). In cases requiring more precise localization we used specialized software to determine the location 

of recording chambers according to structural MRI data. 

Monkey Cicerone (Miocinovic et al. 2007a, 2007b) and SPLASh (Stereotactic PLAnning Software) 

(Sperka and Ditterich 2011) are two software tools developed to guide stereotactic neurosurgery and 

electrophysiology as well as store anatomical and recording data. Monkey Cicerone software includes a 

subcortical atlas and SPLASh includes a cortical atlas; both tools are freely available from the respective 
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authors. In three cases (#3, 4, and 6), targets included cortical areas deep within a sulcus and/or 

subcortical structures, so we used Monkey Cicerone to identify electrophysiology targets and plan 

locations of recording chambers. An important feature of this software is the ability to import and co-

register MRI and CT scan data, making it useful for planning acrylic-free implants. First, MRI and CT 

DICOM volumes were imported into Monkey Cicerone software and then aligned and co-registered. 

Alignment and co-registration were the most tedious steps, but critical to ensure proper positioning of 

implants and particularly in order to use the included atlas. Once the CT and MRI were aligned, the ear 

bar and eye bar landmarks in Monkey Cicerone were positioned according to the CT ear bar or eye bar 

markers described above. In cases where ear and eye bar markers were not visible from scan images or 

were not aligned properly during a procedure, the CT model was useful in positioning the ear bars in the 

auditory meatuses and eye bars at the bottom of the orbitals. Although Monkey Cicerone is a powerful 

tool, it can be difficult for beginners and takes some time to learn. 

A major advantage of this process is that one can modify the purchased headpost to best accommodate the 

location that it will be placed and maximize the number of screws that will be used without compromising 

the location of future recording cylinders. In our sample, six of nine headposts were positioned rostrally 

over the frontal bone extending onto the brow ridge. Because of this positioning, the rostral feet of the 

titanium headposts were shortened to retain two screws per foot, but the length of the headpost feet 

projecting caudally varied depending on skull size and planned chamber locations. In all five cases using 

the DAHP-2 headpost (Gray Matter Research, shown bent to fit a printed skull in Fig. 4), at least two 

screws were kept on at least 5 of the 6 feet, for a minimum of 11 screws per implant (cases #3, 5, 8 & 9)

and as many as 14 screws in two cases (#2 & 7). The headpost for case #1 (F, 9.0 kg) was designed to 

accommodate 10 screws with 1 screw on each of two rostral-most feet that extended lateral from the post, 

and 2 screws on each of four caudal feet. The headpost design for the three remaining cases (#5, 8 and 9) 

accommodated 11 screws and was positioned centrally on top of the head. 

BENDING HEADPOST FEET TO CONFORM TO THE SKULL SURFACE 

A primary goal was to pre-fabricate implants in order to decrease risk of infection and other 

complications related to surgery duration. To decrease surgery times and maximize osseointegration 

potential, titanium headpost feet were bent to conform to the 3D printed skull replicas as closely as 

possible prior to the surgery. Our goal was to maximize points of contact between titanium and bone with 

no more than a 1-mm gap between the implant and the skull at any point. This target was attained in all 

cases with the use of the 3D printed skull replica. For case #1, a footed headpost that fit precisely to the 

skull surface was machined from the titanium alloy Ti-6Al-4V using the 3D-printed skull replica as a 
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template. In five cases (#2, 3, 4, 6 and 7), the double asymmetric headpost (model DAHP-2, Ti-6Al-4V) 

from Gray Matter Research was implanted. In the remaining three cases (#5, 8 and 9), a custom footed 

headpost was made that could accommodate an eye coil connector. With the exception of case #1, all 

headpost feet required manual bending to conform to the dorsal surface of the skull. 

Foot bending can take up to 6-8 hours depending on the skull contour and the experience of the individual 

doing the bending, therefore it is not recommended to make further adjustments during surgery unless 

necessary. There is a point of diminishing return towards the end-stage of bending the metal where a 

small correction in one area will lead to multiple corrections that need to be made elsewhere. In two cases 

of mature male NHPs who had previously been implanted with acrylic implants, it was necessary to 

remove small irregularities on the bone surface to achieve a suitable fit. In both cases this procedure was 

practiced on the skull replica during the planning stage. To bend the headpost feet, bending bars were 

wrapped with self-adhesive bandage to enhance comfort in the hand as well as allow the bending bar to be 

clamped securely in a bench clamp. Clamping the bar and holding the headpost to guide each movement 

allowed for better control and made frequently checking fit against the skull replica more efficient. Each 

headpost foot was bent using small incremental adjustments (large or repeated bends risk cracking the 

metal) starting proximal to the post and moving distally. Note that headpost feet can be bent up and down 

and rotated slightly but not bent side to side. Feet were bent between screw holes as much as possible in 

order to avoid deforming screw countersinks, which could cause a screw not to seat well, potentially 

leading to irritation of the skin above it. Headpost feet were cut to length between screw holes using a 

Dremel cutting wheel and then deburred using a sanding wheel attachment. 

ESTIMATING SCREW LENGTHS PRIOR TO SURGERY 

An important consideration in acrylic free implants is the length of each of the individual screws. In 

traditional acrylic implants, bone screws are screwed in only partially so that most of the screw protrudes 

from the skull to serve as an anchor for the acrylic, and so the screws are much longer than the thickness 

of the bone. In acrylic-free footed implants, however, the screws must be fully seated in the implant to 

avoid irritation of the skin above the implant. The screw must also be long enough for the threads of the 

screw to extend through both the outer and inner cortical tables of the skull in order to maximize the 

strength of the connection between the skull and implant. Ideally, it should be no longer, minimizing 

contact with the dura mater (see Adams et al., 2007, Fig. 3). For these reasons, we chose to use Gray 

Matter screws designed for use with their headpost ($20 each). Gray Matter bone screws are made of 

titanium (Ti-6Al-4V) with flat tops that seat fully into the headpost countersinks and do not protrude 

above the feet, minimizing irritation to the overlying skin. Further, they are micro-blasted to improve 
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osseointegration and have a short rounded tip (0.1 mm) beyond the threaded length of the screw so as not 

to damage the dura mater as the threads extend almost completely to the end of the screw. 

The appropriate lengths of each screw were estimated prior to surgery to ensure that the correct number 

and length of screws were prepared, saving significant time in the operating room. We estimated skull 

thickness in a DICOM viewer (e.g., RadiANT) with measuring tool function – screw locations were 

estimated by eye in the software based on observation of the bent headpost on the skull replica, and 

measurements at several locations across that region were taken to obtain average skull thickness 

measurements as well as minimum and maximum possible thicknesses that would constrain screw length 

choices. In some cases, skull replicas were drilled and a depth gauge used to measure skull thickness with 

more precise localization of screw position (using this method, one can also take into account the spacing 

between the skull and headpost foot). Because the length of the Gray Matter screw is measured from top 

of the threads to the screw tip, the appropriate screw length is the skull thickness plus 0.1 mm for screw 

tip plus an estimate of the spacing between skull surface and headpost foot. For example, if skull 

thickness is measured as 3.0 mm, then a 4.1 mm screw was chosen because a 3.1 mm screw would be too 

short for the threads to extend through the inner table if there was even a 0.1-mm gap. A record of screw 

length predictions, as well as extra screws of each length, were packed for surgery. A depth gauge was 

used during surgery to verify proper screw lengths. 

SURGICAL METHODS FOR HEADPOST IMPLANT 

All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at 

UC Davis and conformed to AAALAC, NIH, and Society for Neuroscience standards. While specific 

procedures varied from case to case, all animals were sedated with intramuscular ketamine followed by 

placement of an intravenous catheter, then intubated and anesthetized with 1-3% isoflurane. Heart rate, 

blood oxygenation and rectal temperature were monitored continuously throughout each procedure. The 

surgical area was shaved and prepared with povidone iodine solution and a sterile field was established 

with a sterile drape under aseptic conditions. The time of first incision was noted, marking the beginning 

of the surgical procedure. 

In four cases a midline incision was used, and in five cases the skin was incised following the “U-flap” 

guidelines suggested by Gray Matter. Briefly, a U-shaped incision was made beyond the area of the 

implant footprint. Blunt dissection was used to separate the skin and fascia from the surface of the skull. 

The skin flap was kept moist with sterile saline soaked gauze throughout each procedure. 
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Once the periosteal surface of the skull was exposed and cleaned, the headpost was positioned and the fit 

was checked. In most cases the headpost fit on the skull exactly as it had on the replica without needing 

additional changes. In cases #3 and 4, slight adjustments were made to headpost feet with the bending 

bars only as necessary, adding 10-15 minutes to total surgery time. In these two cases, irregularities in the 

bone surface were carved away using a bur and pneumatic dental drill so that the headpost seated more 

fully onto the skull surface and increased contact between bone and titanium. The headpost was placed in 

its final location and two of the most proximal holes were marked with a pencil, then the headpost was 

removed and those two holes were drilled. Before attaching the headpost to the skull, a layer of Fusion 

Bone Putty (hydroxyapatite mixture; described below) was applied to the bottom of the post feet and to 

the skull surface to fill any gaps. The headpost was attached with first two screws (but not tightened 

completely) and then remaining holes were drilled with the headpost in place so that all holes were drilled 

in the correct location. Drilling screw holes properly takes practice and skill (the skull replica can be used 

for this purpose; it is also customary to practice using a mature coconut).  Drilling must be performed 

with a quick, smooth motion to avoid excessive heat build-up that could damage the bone, and perfectly 

perpendicular to the skull surface so that the screws will seat completely into its countersink. We used 

both a pneumatic dental drill as well as a hand drill (see below), and both worked well.  When using a 

pneumatic drill the sterile surgical assistant continuously infused the skull where the hole was drilled with 

sterile saline.  This aided in visibility as it washed away the bone dust, as well as keeping the tissue from 

overheating. Screw holes were drilled using a 1.8 mm diameter carbide bur (SS White Burs, Round #6), 

which is slightly smaller than the 1.9 mm core diameter of the Gray Matter bone screw so that the screw 

could be used as self-tapping, ensuring maximal contact between screw surface and bone. Despite 

measuring within software for screw lengths prior to surgery, actual depths were measured with a surgical 

depth gauge to ensure the correct length of screw was used. This verified that the estimates were largely 

correct, although in a few cases a different length of screw was substituted. Fusion Bone Putty was 

applied to each screw before insertion, and added around the edges of the headpost feet, filling any gaps 

and crevices. Finally, screws were tightened by hand with a 1.3 mm hex driver (Gray Matter), alternating 

about quarter to half turn of each screw, until all screws were just seated in the headpost. This reduces the 

risk of over tightening the screws and stripping the hole and potentially damaging the bone. 

The retracted muscle and fascia were then pulled over the feet and sutured whenever possible in order to 

put tissue between the feet and the overlying skin.  This was not achievable in some cases where an 

animal had a previous acrylic implant, or for regions very close to the midline.  For midline incisions, the 

scalp was sutured with simple interrupted stitches so that the skin was closed around the implant as tightly 

as possible. In cases in which a U-flap was made, the location of the post base incision was estimated and 
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marked with surgical marker on the skin surface before cutting the flap. After the headpost was screwed 

to the skull, the skin was stretched forward and the hole was cut at this time in order to position the hole 

correctly at the base. To limit skin retraction, we retained as much tissue as possible while cutting this 

hole: A small “X” incision was made in the location where the base of the headpost would protrude from 

the skin. The skin flap was stretched forward until the top of the headpost met the “X”. While holding the 

flap in this configuration, the “X” was opened further with a scalpel just enough to accommodate the post 

and then the flap was pushed down over the post (widening the incision as necessary) to the surface of the 

skull and headpost feet. The margin from the X incision was trimmed with a scalpel. The U-flap was 

closed with simple interrupted sutures. All other surgical and post-operative procedures were as per usual 

surgical guidelines as referenced above. 

USE OF HYDROXYAPATITE TO AID OSSEOINTEGRATION 

In contrast to traditional screw-fixed acrylic implants, the fixation method for titanium footed implants is 

via osseointegration (as described above) which is enhanced with the application of a hydroxyapatite 

(HA) coating or paste. Similar studies have used an HA paste (Adams et al. 2011) or HA coating applied 

to the titanium surface in contact with bone (Lanz et al. 2013) to increase osseointegration of the implant. 

We searched for alternatives to the [human-grade] Mimix QS (Biomet) HA paste used by Adams and 

colleagues (2011) due to high cost of the material ($884 for 3.45 cc). We weighed different options and 

decided to use Fusion Bone Putty (Veterinary Transplant Services, $68 for 1 cc single use vial; see Table 

3.2 for details) in almost all of our implant procedures. Fusion Bone Putty is a mixture of HA, 

demineralized bone matrix (DBM) and beta-tricalcium phosphate (β-TCP), which are necessary 

ingredients for bone growth; DBM and β-TCP increase the rate of osseointegration compared to just HA 

alone (Urist et al. 1987; Trisi et al. 2003). Fusion Bone Putty single-use sterile packs (1-cc or 3-cc vials) 

have a long shelf-life (2 years) at room temperature. We found that the 1-cc vial of bone putty was ample 

for a single headpost surgery. In the event that a drilled hole could not accommodate a screw (one 

occasion of a mis-drilled hole) the hole was packed with bone putty. Small defects (< 1 cm diameter) 

apparent in the bone from previous implants (e.g., old screw holes not fully healed) were filled with bone 

putty as well. In addition to the use of Bone Putty, an HA coating was applied to the footplate of the 

headpost in one case (#9) prior to implant (PCS Materials; ~$500) with the hope that the HA coating on 

the superior surface of the feet would prevent skin recession (see Results and Discussion). 

ATTACHING THE HEADPOST TO THE PRIMATE CHAIR 

It is important to wait a sufficient amount of time for osseointegration of the headpost before attempting 

to first attach the headpost to the primate chair. Osseointegration of titanium load-bearing implants takes 
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6-12 weeks (Hacking et al. 2012). Hacking and colleagues (2012) waited 6 weeks before head-fixing a

subject after implantation of a titanium headpost surface-treated to optimize osseointegration. Adams and

colleagues (2007) waited two weeks with a similarly treated post. In another case, Adams and colleagues

(2007) waited just 12 days after surgery to use the headpost, but after just 6 days of use this headpost

(Crist Instruments) failed at the welded post-footplate juncture (note that all of our headposts were from a

machined from a single piece of stock and were not welded) and the footplate remained implanted (this

event was unrelated to early posting). Inspection of this titanium footplate 1 month after implantation

showed considerable remodeling and development of desired “woven bone” callus formation at the edges

of the titanium footplate and around the tips of screws on the inside of the skull (see Fig. 5 in Adams et al.

2007) supporting the idea that 6-12 weeks is more than sufficient and likely overly cautious. In order to

allow sufficient osseointegration, we waited a minimum of 4-5 weeks before attempting to use headposts,

and as many as 12 weeks in cases of larger, stronger animals and/or if there had been complications with

previous acrylic implants that might compromise bone integrity. Age of the animal was also a factor in

estimating healing times – we waited longer than 12 weeks in the case of a geriatric animal (age 29.3, or

~88 human years). Refer to Table 4 for post-implant latency to the first head fixing where available. We

used the healing period to gradually acclimate novice animals to the laboratory environment and

headposting procedures.

A disadvantage of the footed headpost is that the angle of the post is determined by the location on the 

skull where it fits best and does not necessarily project vertically from the skull relative to the primate 

chair as it often does in an acrylic implant where the post orientation can be determined more precisely by 

the surgeon. Consequently, in many cases the angle of the acrylic-free post does not readily mate with a 

standard primate chair (e.g., Crist-style primate chair) which has a vertically-oriented head holder. Care 

was taken to center the post as much as possible, so only pitch (and not yaw or roll) axis of rotation would 

need to be adapted to the chair, but in reality, a system with three axes of rotation is necessary to ensure 

that the fixed posture of the animal’s head is both comfortable and compatible with the experimental 

setup. We used a system of post and strut clamps as shown in Figure 5 (Misumi, see Table 3.2 for details) 

to attach the headpost holder to the primate chair. Approximately 10 cm of the distal end of the headpost 

adaptor was turned down on a lathe to a diameter of 12 mm in order to mate the Gray Matter headpost 

adaptor to the strut clamp. Alternatively, clamps with different diameters may be available through 

Misumi as a custom order. The clamps were adjusted in order to optimize the animal’s head position and 

maximize the animal’s comfort. An advantage of this system is that the angles can easily be adjusted in 

small increments. Once the optimal position is determined, the clamps were tightened and one system of 

three pieces was reserved for each animal. The Misumi clamps are small and inexpensive enough that it is 
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efficient to have a single set for each animal-chair combination and avoids the need to reconfigure the 

clamp system during each recording/behavior session. In the case of one large male macaque, one of the 

clamps had to be modified by adding a set screw to further tighten the clamp for recordings. In our 

experience, clamps that require daily tightening will need to be replaced approximately once every 3-4 

years due to wear of the ratcheting clamp levers. 

At the time of this writing, Gray Matter has developed an articulated clamp head-holder system that 

solves the problem of the implant protruding from the head at variable angles and includes measurement 

scales engraved onto the hardware so that configurations can be reproduced reliably. The articulated 

clamp system ($1500) is designed to mate with their new primate chair and docking station (prices 

available upon request). While Gray Matter’s clamp may be compatible with other chair designs, it does 

not appear to be compatible with our Crist primate chairs (audio or vision style chairs). Crist Instruments 

also has a solution, the “swivel head positioner”, that can accommodate a variety of head post angles, and 

should work in most cases. 

IMPLANT MARGIN CARE

In each case, implant margin condition was monitored at least once per week. In the best of 9 cases, the 

implant margin remained clean and dry and no maintenance was required for the 1.6 years that the 

headpost was implanted (case #3). If granulation tissue or evidence of weeping or exudate was observed, 

then the fur at the implant margin was shaved once per week and cleaned gently with a solution of either 

betadine or chlorhexidine. Topical application of silver sulfadiazene was applied 3-5 times per week in 

cases with excessive weeping or exudate. 

3D PRINTED HEADPOST COVERS 

Primates naturally engage in grooming behaviors and may exhibit a tendency to pick their sutures or 

implant margin, particularly while they are healing and cannot be pair-caged with another monkey. 

Animals are provided extra enrichments such as puzzle toys filled with popcorn and fruit to mitigate this 

behavior. Once they recovered sufficiently from surgery they were paired with a companion daily, which 

further prevents potentially self-injurious behavior. As discussed in more detail below, the skin at the 

implant margin of the titanium headposts had a tendency to recede along the implant feet, exposing metal 

and screws. We were concerned that potential irritation would promote scratching and picking at the site 

and exacerbate skin recession. To limit the monkeys’ ability to access the implant margin we designed 

customized covers (“hats”, see Figure 7) that were then 3D printed with acrylonitrile butadiene styrene 

(ABS) plastic and customized to each animal. 
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The hats were designed to cover the exposed portion of the headpost in addition to protecting the implant 

margin and area of skin covering the implant. Whereas the hat brim needed to be close enough to the 

scalp to prevent picking, air flow is needed to prevent the proliferation of anaerobes; we therefore aimed 

for approximately 5 mm spacing between the scalp and brim. Initially, we designed the hat to screw in to 

the top screw similar to the provided Gray Matter cover (Fig. 7A). However, we found that the hats had a 

tendency to spin which would wear down the top portion of plastic very easily. We updated our design to 

screw from the front using the same screw hole that is used to attach the headpost connector. This “igloo” 

design (Fig. 7B and C) solved the spinning problem and was much more robust. We printed the hats with 

excess material around the brim and then removed material with a sanding belt and various sandpaper 

grits to customize the fit and create a smooth finish. Adjustments were noted and the CAD file (Autodesk 

Inventor) was updated for future iterations. This method of rapid prototyping was very useful for this 

purpose and small adjustments could be made easily and cheaply in order to achieve a highly functional 

part. 

DESIGN AND PRODUCTION OF THE PEEK RECORDING CHAMBER 

In addition to titanium footed headposts, in one case (#3) we designed a custom-fitted recording chamber 

similar to previous reports (McAndrew et al. 2012). The recording chamber location was planned using 

Monkey Cicerone software. Once MRI and CT images were co-registered and aligned (as described 

above a chamber template was chosen in Cicerone with the correct inner diameter (17 mm). Our 

recording chamber was designed to fit a 17-mm Crist grid and grid adaptor to mate with a Narishige 

hydraulic microdrive (model MO-95). We used Monkey Cicerone’s electrode tracker functionality to 

maximize access to our region of interest and estimated grid positions and recording depths (Fig. 6A). 

Cicerone provides stereotaxic coordinates, however it was not possible to export Cicerone’s coordinate 

system to communicate with CAD software directly. Thus, the positions of the two ear bars and one eye 

bar were used to define a reference plane. The chamber bore was oriented parallel to the sagittal plane, so 

its position was defined by translation in two dimensions (lateral and caudal) and one angle that was 

measured from the stereotaxic reference plane using a screenshot taken from Cicerone. This position 

information was used to determine the location of the chamber in Meshmixer (Fig. 6B). Then the area of 

skull directly below the recording chamber was isolated in Meshmixer, along with reference points 

corresponding to ear bars and one eye bar, and the resulting STL was imported into Autodesk Inventor 

(Fig. 6C; this step is to limit the amount of system resources needed to work with the STL in Inventor). A 

“User Coordinate System” was established in Inventor to aid in generating the chamber in its proper 

location with the origin at the surface of the skull at the center of the chamber, and the X vector pointed 

along the bore of the cylinder (the direction of the electrode track as defined in Cicerone; Fig. 6C). A 
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chamber was then generated by extruding a ring along the X axis and centered at the origin. The extrusion 

was terminated on the STL surface, creating a cylinder with a base that conformed perfectly to the skull 

contour. Feet were then added at desired locations, such that they were normal to the center of their 

mounting hole location. The four feet of the chamber were designed with curved edges in an attempt to 

minimize irritation to the skin above. Prototypes of the chamber were 3D-printed and positioned on the 

3D-printed skull replica at several stages of the design process to verify positioning and fit. The final 

recording chamber was 3D-printed from PEEK by Solid Concepts (Austin, TX) using a selective laser 

sintering process. A copy of the recording chamber was printed in VeroWhite (Stratasys Objet260 printer) 

and truncated with a Dremel cutting wheel to only include the base and feet (~5 mm height) and served as 

a template for marking the implant position on the skull and performing the craniotomy during surgery. 

IMPLANTING THE RECORDING CHAMBER 

The 3D-printed PEEK recording chamber was steam sterilized and implanted following all previously 

stated surgical procedures. We used a U-shaped incision as described above for headpost implants. The 

recording chamber fit precisely as planned and the desired location was easy to find as there was only one 

way that the chamber base could be matched with the skull. The chamber’s outer perimeter and screw 

hole locations were marked with a surgical pen. The shortened 3D-printed implant template (Sterrad gas 

sterilized) was used to mark the inner boundary of the recording chamber and the craniotomy was 

performed with a surgical drill. This would have been difficult given the height and angle of the chamber. 

The first hole was drilled, then the implant was attached with one screw, then the remaining three holes 

were drilled with the implant in place. Holes were initiated using a sharp drill bit (Veterinary Orthopedic 

Implants, $35.00) held with a hand tap handle (Veterinary Orthopedic Implants, $115.20) in order to 

ensure accuracy of positioning and limit heat build-up. Finally, a surgical drill with a bur was used to 

complete the holes safely without risking damage to the dura. The bottom surface of the implant and the 

skull surface were coated thinly with bone putty. The three remaining titanium screws (Gray Matter) were 

tightened, alternating about a half turn per screw. Screws fit very tightly and were screwed until the base 

of each screw was just seated in its respective countersink to avoid stripping. The chamber was filled with 

sterile saline to determine if there was a water-tight seal and leaks were addressed by packing Fusion 

Bone Putty around the outer edge of the bone-implant interface. Fascia and muscle were pulled over the 

skull and implant feet and sutured wherever possible as described above for the headpost. The skin flap 

was pulled over the implant and an X-shaped incision was cut for the chamber to fit through. The skin 

flap was sutured and skin glue was placed over the sutures. Chamber positioning was later verified using 

MRI, before physiological recordings commenced. 

RECORDING CHAMBER LEAK TESTS 
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In addition to routine recording chamber maintenance, leak tests were conducted regularly to ensure that a 

water-tight seal remained at the implant-bone interface. A leak test was performed at least once per week 

during cleanings by filling the chamber with fluid and noting the level of fluid after 15 minutes. For the 

lifetime of the implant (see Results) the fluid level remained stable at each leak-test, indicating a 

watertight seal was achieved and maintained. 

Because case #3 had a history of infection, we designed a cover for the recording chamber to prevent the 

monkey from being able to pick at the implant margin that was similar to the “hats” fashioned for the 

headposts. The cover was a two-piece design which fit over the Crist chamber cap snugly and utilized the 

flat edge of the cap to prevent rotation of the “hat”. The chamber cover was 3D printed and excess 

material around the brim was sanded down for a custom fit so that it would not touch the scalp at any 

point. 

RESULTS 

SURGERY TIME SAVINGS AND COST EFFECTIVENESS 

The feet of a titanium headpost were bent to conform to 3D printed replica skulls prior to surgery, leading 

to a better overall fit and dramatically reduced surgery times (50% to 70% time savings) compared to 

traditional methods. Our acrylic-free headpost implant procedures averaged 1 to 2 hours compared to 2.5 

to 3.5 hours for acrylic-embedded headpost surgeries performed by the same surgical teams. Bending the 

titanium feet prior to surgery was a significant improvement over bending the feet intraoperatively, as has 

been previously reported (Adams et al. 2007). Intraoperative bending of a titanium footed headpost to fit a 

skull can take several hours. In our cases, pre-operative bending took from 6 to 8 hours, depending on the 

complexity of the skull (for example, bending an “S” curve to match a prominent brow ridge presented 

more of a challenge). Furthermore, while this is a considerable time investment, we were able to achieve a 

very close fit (1-mm gap maximum, compared to 2-mm gap, Adams et al. 2007) to increase 

osseointegration, even by individuals bending the feet for the first time. 

DURATION OF HEADPOST IMPLANTS AND OUTCOMES 

The outcomes of the headposts that were implanted using these techniques are summarized in Figure 8 

and Table 4. Five of these animals are still implanted, while the other four were euthanized due to study 

endpoints (3 animals) or due to reasons unrelated to the implants or experimentation. There were no 

complications or cases of infection that compromised the integrity or functionality of the implant in any 

of the 9 cases, which includes two animals with histories of chronic infection associated with prior acrylic 
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implants. One case (#2) has been implanted for over 4 years. Several cases have undergone surgeries for 

recording chambers or other repairs, and investigators have observed growth of bone along the sides of or 

covering headpost feet, indicating osseointegration consistent with previous reports (see e.g., Adams, et 

al., 2007, Fig. 7 or Adams et al., 2011, Fig. 5). This is in contrast to the results from 11 acrylic implants 

(dental resin or orthopedic cement) reported in Lanz et al. (2013). In their hands, the average time that the 

implant had integrity was 8 months (range 3 – 12 months), with two cases where the implant had to be 

removed due to infection and three additional cases where the device was explanted for other reasons (i.e. 

breakage). This contrasts with this report, where the implant remained fully functional in all monkeys 

until euthanasia (a minimum of 2 years for all monkeys still participating in experiments) and no cases of 

infection or the necessity to explant. 

IMPLANT MARGIN CONDITIONS WITH FOOTED HEADPOSTS

Adams and colleagues (2007) emphasized that the implant margins of their titanium headposts did not 

require maintenance or cleaning “throughout the lifetime of the implant.” In contrast, Mulliken and 

colleagues (2015) assert that footed implants result in “skin recession [which] can lead to exposed bone, 

which can degrade over time, and also increases the likelihood of an infection as granulation tissue 

proliferates, jeopardizing the integrity and lifetime of the implant.” Across our 9 cases we found 

considerable variability in the need for cleaning or treatment; Figure 8 summarizes implant margin 

conditions for all nine cases. In 7 of 9 cases, retraction of the skin and exposure of titanium feet occurred; 

metal exposure occurred as early as day 30 in case #9 and as late as day 314 in case #8. The implant edge 

around case #4’s headpost remained clean and dry and required little to no cleaning until he was 

euthanized for unrelated health issues at the age of 30.8 years. Case #2 continues without metal exposure. 

We compared outcomes across the type of incision (U-shaped vs. midline), whether there was previously 

an acrylic implant in place, surgeon, type of headpost implanted or other factors (Table 3) and found no 

consistent differences across cases. Cases with skin retraction were treated with frequent cleanings and 

application of silver sulfadiazine ointment as noted above in Methods. In three cases we attempted 

surgical intervention by pulling skin over the feet and suturing it closed, however in each case the scalp 

quickly regressed to its original state. Despite the frequency of skin retraction (78%), we observed no 

cases of bone exposure. The lack of bone exposure in all of our cases is in stark contrast to Mulliken and 

colleagues’ (2015) assertion that bone exposure is an eventual outcome of using this style of implant. In 

our cases, the skin retracted only along the titanium feet, and the skin overlying the bone remained fully 

intact and well adhered to the underlying bone. Thus, as opposed to a circular or oval retraction as 

described by Mulliken and colleages (2015), in our experience the skin edge took on a scalloped shape, 

with good adherence to the skull but retracted along the titanium feet. In one case, skin regression seemed 
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to be due to irritation from the tops of the screws themselves; in this case (#6) two screws were eventually 

ejected. For each screw ejection, granulation tissue filled the site and the skin regrew to cover the foot and 

empty screw hole within a two-month period. Furthermore, as the implant osseointegrates and bone 

grows over the feet, the skin grows with the bone. There were no cases of peri-implant infection or other 

complications for  years from when skin recession was first observed (Fig. 8 and Table 4). 

RECORDING CHAMBER OUTCOME 

The 3D-printed PEEK recording chamber in case #3 maintained a watertight seal from 1 week post-

implant (first cleaning) until the implant was removed 10 months later. The PEEK implant edge remained 

clean and dry with minimal maintenance for about two months after which granulation tissue appeared, 

but the skin did not recede from the implant margin. After 3.5 months the recording chamber could be 

moved slightly with some manual pressure, indicating that the tightness of fit was beginning to be 

compromised, but it remained watertight and free of infection for several more months. At 8.5 months the 

caudal medial screw of the PEEK recording chamber fell out and the chamber became much looser, but 

still remained watertight. The case was assessed via CT scan and consult with a radiologist, confirming 

osteomyelitis and loss of bone under the caudal portion of the implant. It is worth noting that the portion 

of skull that became infected under the PEEK implant was an area of bone that had regrown after a 

previous case of osteomyelitis under an acrylic implant. The recording chamber was promptly removed 

and the animal recovered without incident. His titanium headpost remains intact and fully functional and 

the animal continues to participate in psychophysical experiments. 

Single neuron recordings were performed through this recording cylinder, using the same techniques as 

with a traditional Crist cylinder. There was no noticeable difference in the ability to maintain single 

neuron isolation, operation with the Microdrive, or any other aspects compared to the previous 

techniques, indicating that the cylinder was as stable as a titanium or stainless steel cylinder. 

DISCUSSION 

HEADPOSTS

In nine rhesus macaques, we implanted titanium footed headposts that were formed prior to surgery to 

conform to a 3D printed skull replica based on CT scans of each animal’s head. A major benefit of pre-

forming the implant is that it is possible to achieve a closer fit between the implant and skull surface. 

Minimizing the distance between the bone and implant and maximizing contact points leads to a more 

stable interface between the bone and titanium and faster and better osseointegration (Plecko et al. 2012). 
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A second major advantage of implant prefabrication is that it reduces surgery times up to 70%, which 

translates to decreased risk of infection and complications (Mangram et al. 1999; APIC 2010). 

Additionally, this can reduce cost (surgical suite recharges, veterinary staff, etc.), if applicable. This is 

based primarily on the amount of time it takes to accurately bend the titanium feet to fit snugly against the 

skull, in our experience taking 6-8 hours. A well-experienced individual may be able to perform this task 

in considerably shorter amount of time, which could be appropriate for large laboratories where many 

surgeries are performed each year, but is less desirable for smaller laboratories where individual 

investigators may do only 2-3 surgeries during their training period. Again, the close fit with minimal 

gaps and the majority of the feet firmly against the skull will allow for maximal osseointegration. Finally, 

if a surface treatment is to be applied to the headpost, such as a HA coating, it would be preferable to 

perform bending prior to treatment for best results.  A second consideration is the use of titanium versus 

ceramic screws. Titanium has the advantage of the osseointegration, but a clear disadvantage that it will 

produce a considerable shadow in MRI and fMRI images.  If the brain region of interest is several 

millimeters away from the screws, this should not present a problem. However, the titanium headpost 

produces a large shadow in MR imaging as well, so the slight reduction from the ceramic screws is less of 

an issue. Alternatively, ceramic screws in an acrylic-based implant serves the same purpose as the 

titanium screws, although they tend to be more expensive. 

A persistent issue we encountered with the acrylic-free headposts was retraction of the skin at the implant 

margin and exposure of the titanium feet (Fig. 8). This was unexpected because previous reports have 

claimed that the titanium headpost implant margin remained intact, clean and dry and required little to no 

maintenance (Adams et al. 2007; Lanz et al. 2013). Other reports of acrylic-free implants describe skin 

recession as a minor consequence without discussion of extent or progression of recession (Pfingst et al. 

1989; McAndrew et al. 2012). Yet another recent report claims that footed implants lead to skin recession 

with bone exposure as an eventual outcome (Mulliken et al. 2015, Fig. 1). The extent of skin recession 

varied from none at all to approximately 14 mm of skin recession (two screws exposed) along several 

feet, with the exposure of several screws in the most severe case. No single factor (age, previous acrylic 

implant, etc.) was consistent to explain why this was more of a problem in some animals than in others 

(Table 4), although the sample size is too small to make definitive conclusions. There was no difference 

between the midline and U-flap procedure in our hands.  This is somewhat surprising as the U-flap 

procedure is intended to avoid dehiscence and skin retraction because after surgery the feet of the post are 

entirely covered by intact skin and the sutured “U” incision falls outside of the footprint of the headpost. 

We also considered whether direct contact between the implant feet with the skin, or with intervening 

fascia or muscle made a difference, but we were unable to determine that definitively as all surgeons 
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attempted to cover the implant feet with as much tissue as possible, and it was difficult to assess the 

extent post-operatively. Despite this variability, we did not find a single instance of bone exposure, the 

skin always retracted directly above the titanium implant and even in cases where more than one of the 

titanium feet was exposed, the skin did not retract between them, giving the skin margin a scalloped 

appearance. Finally, after considerable care and veterinary attention, we concluded that exposure of the 

titanium feet of the implant was not of great concern because the implant margin would stabilize and 

there were no clinical concerns or negative outcomes such as infection due to the exposed metal. 

While finding that metal exposure is not a specific concern in itself, the risk for infection is increased 

whenever there is a breach of the skin. Skin recession at the implant margin requires frequent monitoring, 

cleaning and treatment when it occurs. An ideal implant technique would support adhesion of the skin 

tissue to the implant at the appropriate junctions without compromising osseointegration of the implant 

with the bone. This is the main challenge of bone-anchored percutaneous implants and is an active 

research area in the application of human prosthetics extending beyond cranial implants in experimental 

animals. Poor epithelialization at the skin-implant margin leading to infection is a common problem with 

percutaneous osseointegrated prostheses (POP), a technique that allows a prosthetic limb to be anchored 

directly to the bone via a titanium rod (Holt et al. 2013; Pitkin 2013). Dental implants have provided the 

model for percutaneous implant development in humans as well as in NHP, however, dental implants 

have decreased rates of infection compared to POP implants because the gingiva surrounding dental 

implants epithelializes faster than non-oral epithelial implant interfaces (Pendegrass et al. 2015). 

Furthermore, whereas roughening the titanium promotes better osseointegration, Pendegrass and 

colleagues (2008) found that a smoother surface of the Ti-6Al-4V titanium alloy contributes to faster and 

better epithelialization in vitro, suggesting that polishing the upper surface of the titanium feet would lead 

to better implant margin results in the NHP headpost. Different coatings and treatments of the titanium 

implant surface, such as with HA or fibronectin have also been demonstrated to improve epithelial cell 

(fibroblast) adhesion (Chimutengwende-Gordon et al. 2011). These findings suggest that devising a cost-

effective methods for coating the implant after it is formed and before it is implanted would improve the 

adherence of the skin and reduce retraction of the implant margin in titanium NHP implants. 

The nine cases reported from three laboratories in the current study is the most extensive account of 

acrylic-free titanium headposts and implant margin outcomes to our knowledge. The nine cases presented 

here represent both sexes and range considerably in age and weight. Five animals are still implanted with 

titanium footed headposts and continue to be enrolled in experiments, with the longest headpost implant 

surviving over 4 years to date. Not a single case of the 9 studies showed any signs of bone exposure, 



Improved methods for acrylic-free implants in NHP 26 

infection or other complication that would require removal of the implant, and all headposts have 

remained stable since the time of implantation. 

RECORDING CHAMBER 

We designed a customized recording chamber using structural MRI to guide positioning and CT data to 

form a perfectly contoured implant. The recording chamber was 3D printed in PEEK and implanted onto 

the skull of case #3 with four titanium bone screws. Using this method resulted in a perfectly placed and 

fitted recording chamber that remained watertight (leak-free) for 8.5 months. The recording chamber was 

placed partially overlapping a region of bone that had regrown after becoming infected under a traditional 

acrylic implant. Despite having been able to heal for nearly two years (693 days), the infection returned to 

the same site of the skull, compromising the implant. Recurrence of osteomyelitis after a prolonged 

remission is a commonly recognized problem in the human literature (Donati et al. 1999; Uçkay et al. 

2006; Stevens et al. 2007; Yun et al. 2008), so much so that a recent report stated that "'cure' of the 

disease cannot safely be declared” (Panteli and Giannoudis 2016). Whereas recurrence of osteomyelitis 

often occurs even in the absence of a new trauma or apparent route for reinfection (Donati et al. 1999; 

Uçkay et al. 2006; Stevens et al. 2007), the problem is particularly salient for veterans who have sustained 

wounds in combat and for whom the presence of an orthopedic device is a major risk factor (Yun et al. 

2008). Considering this, we believe that the return of bone infection was not intrinsically due to the 

procedures stated in this report, although re-implant in the affected area may have contributed to 

reactivation of the infection. Ultimately, the question remains whether an implant can be safely placed 

over a previously infected region of bone, and if so, what are the best procedures to follow to prevent re-

infection. It should be noted, however, that this is not a problem for implantation into bone areas that 

were never infected, as this same animal has a non-acrylic headpost that has remained infection free for 

over 4 years to date. 

COMPATIBILITY WITH EXISTING SYSTEMS 

Compatibility of implant hardware with head-holders and recording systems is an under-appreciated and 

under-communicated issue in NHP studies. For example, the headpost must be designed to mate with a 

head-holder which must be secured in some fashion to the primate chair or an external apparatus. 

Similarly, the recording chamber must accommodate recording or stimulating hardware such as a 

microdrive, which in turn is often constrained by the specific style of electrode being used. All these 

considerations (primate chair, recording set-up, stimulus presentation, electrode style, etc.) must be taken 

into account when deciding upon or designing any component. The three labs in the current study had all 

previously used a Crist-style headpost system to mate with Crist primate chairs built for visual or auditory 
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studies. Two labs used Misumi clamps (Figure 5) to adapt headposts to the chair and accommodate 

various angles. The third lab designed their headpost to mate directly with a custom headpost adaptor and 

they modified the primate chairs directly to accommodate the headpost angle by replacing the top bar. 

There are commercial alternatives, for example from Crist Instruments and Gray Matter, which perform 

similar function but at considerably higher cost.  However, we did have to modify the Misumi clamps to 

add a set screw for extra stability for the largest animal, so it may be prudent to consider those alternatives 

for particularly large or aggressive animals. Finally, the recording chamber was designed specifically to 

be compatible with a Narishige hydraulic microdrive. 

The major advantage of the 3D-printing described here is that it is possible to design and test specialized 

parts quickly and inexpensively. For example, one can place the replica with a headpost into the chair to 

verify that adaptors for recording cylinders, electrode holders, microdrives, pre-amplifiers, etc., are 

appropriately positioned before involving the NHP. Others have fabricated custom headposts and 

cylinders without the replica, milling the hardware directly from the computerized software (Logothetis et 

al., 2002), although this requires a sophisticated milling machine (in this instance a 5-axis Willemin 

W428) which is not available to most laboratories. Alternatives are commercially available custom 

cylinders (i.e. Rogue Research; Johnston et al., 2016) which should be considered, as they also produce 

the 3D replica but cost on the order of $1500. Other commercial (e.g. Crist Instruments), institutional or 

independent machinists can also custom fabricate such cylinders, although they also tend to be expensive 

(range $1500 - $5000 from our quoted estimates). In contrast, the 3D printed PEEK cylinder was on the 

order of $150-$200 to print the cylinder plus ~$150 to design the cylinder based on the position on the 

skull. Given that the tolerances of 3D printing (+/- 0.25 mm) has sufficient resolution and there are 

considerably lower forces on recording cylinders compared to headposts, the cost drove our decision. It 

should be remembered, however, that unlike titanium, PEEK does not osseointegrate. Rapid prototyping 

technology, both 3D software tools as well as additive manufacturing or 3D printing hardware, is rapidly 

advancing. In the five years since we began this project, significant improvements have been made, and 

we discuss these changes in Methods where applicable. Regardless, the general methodology we 

described will be relevant for some time. Advances in manufacturing and 3D modeling will undoubtedly 

continue to help overcome barriers in creating implants in a variety of materials that are customized to the 

patient or research subject. We hope that this and similar results will promote discussion and research so 

that we can further refine implant methods for NHP research. 

CONCLUSION 
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Despite the increase in popularity of acrylic-free methods and the use of more biocompatible materials, 

the use of acrylic for NHP implants remains the most commonly used choice. A potential hurdle in the 

adoption of acrylic-free methods may be increased cost compared to acrylic, as well as uncertainty 

regarding techniques, timelines, and outcomes. We implanted nine acrylic-free titanium footed headposts, 

and one PEEK recording chamber. Our primary goals were establishing techniques to decrease surgery 

times, reduce costs, and maintain compatibility with existing laboratory systems such as primate chairs 

and recording apparatuses. We addressed these issues by forming titanium footed headposts pre-

operatively using 3D printed skull replicas of each animal, using free and open-source software wherever 

possible, and by adapting headpost procedures in three different laboratories and assembling an 

inexpensive system of clamps to mate the headpost with a primate chair at any angle. We describe 

timeline considerations, including time required for each step as well as healing time for headposts to 

osseointegrate properly. In our experience, the acrylic free implants are about three times more expensive 

than the acrylic implants ($1800 vs ~$600) when taking into account only the headposts themselves and 

the screws.  However, the main advantages to acrylic free implants are the longevity of the implant, 

allowing the animals to be used for long duration, chronic experiments (>4 years in our experience) 

eliminating the need to do multiple implants, explants, and re-implants, and the dramatic reduction in 

surgery time for the surgeon (from 3-4 hours to an hour or less). Regarding outcomes, skin regression and 

bone exposure are a major concern for footed titanium headposts. It is difficult to directly compare the 

disadvantages of the skin regression with the titanium headposts to the relative lack of this issue with 

acrylic implants. However, while we found considerable variability with respect to skin regression and 

exposure of the metal implant, there was not a single case of bone exposure or other complication that 

would warrant removal of the implant. Nonetheless, these methods must be refined further in order to 

determine what implant properties and procedures could be implemented to improve skin-implant margin 

conditions. Ultimately, however, if acrylic-free methods are to be adopted, there must also be a 

streamlined method for designing and implanting an acrylic-free recording chamber along with the 

headpost. Our single case of a PEEK recording chamber failed due to recurrence of a previous infection 

so it is unknown what outcome could be expected in other cases using the same techniques. Overall, this 

is a important area of investigation that has the ability to significantly improve the welfare of research 

NHPs. 
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FIGURE CAPTIONS 
Figure 1. Diagram of the traditional polymethyl-methacrylate (PMMA, or “acrylic”) implant (top) and 

acrylic-free titanium footed headpost (bottom). A) A parasagittal view of the acrylic implant shows how 

bone screws are used as anchors for the PMMA mass and the recording chamber and headpost are 

embedded in the PMMA. Cross-hatching on headpost and chamber represent knurling that allows the 

PMMA to “grab” the metal. The headpost is further stabilized with a cross-bar (shown in B), show as a 

circle in A. The anterior-posterior axis is shown in the inset. B) Drawing of a top-down view of a monkey 

head with an acrylic implant, showing the large size of the implant margin relative to the headpost and 

recording chamber. Screw positions are drawn to illustrate a typical configuration used to ensure a secure 

implant and shown in gray to indicate that they are beneath acrylic. C) A parasagittal view of a titanium 

footed headpost. Note that screws are flush with the top of the headpost feet, which are covered by skin. 

D) The skin/implant margin of the titanium footed headpost is limited to the circumference of the post

itself. The implant feet are shaded light gray to illustrate that they are covered by skin.

Figure 2. Timeline of headpost implant procedures to accompany Table 1. This figure depicts the steps 

detailed in Table 1 according to two potential timelines in order to give the reader a sense of how much 

time to allocate for each step. The timeline on the left indicates a feasible timeline where all steps up to 

headpost surgery can be completed in 16 working days. The “Rush” timeline on the right shows a 

possible 7-day timeline. Note that printing times may vary by service and any procedure that requires 

coordination with other staff may incur delays. 

Figure 3. Photographs of 3D printed skulls of case 1 (top) and case 4 (bottom). A) Skull printed on a 

ZPrinter model 450 after being cleaned and cured. B) Same skull as in A, shown mounted in a stereotax 

with sulci and perimeter of planned recording chamber marked with pencil. C) Skull printed on a 

Stratasys Objet Eden 260V shown still on printing tray with gel-like support material intact. Skull replica 

was cropped into two pieces using Netfabb in order to save cost of support material. D) Same skull as in 

C, after cleaning and before the two pieces were glued together using cyanoacrylate. 

Figure 4. Gray Matter headpost formed on a 3D printed skull replica (case #2) shown from various 

angles. The aim is to maximum contact and minimize gaps between skull and implant. Small gaps are 

evident as shadows. For reference, the thickness of the headpost foot is 1.39 mm, screw holes are 3 mm in 

diameter at the base and 5 mm at the top of the countersink and the distance between screw holes is 

approximately 4.5 mm at base (~2.5 mm on top). A) Top front view. B) Oblique right frontal view. C) 

Front close-up view. D) Right side view, slightly oblique to show curvature of front feet over brow ridge 

and slight spacing at distal end of feet. E) Left side view. F) Top view, showing configuration of all feet 
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and screw holes on skull replica. Caudal right foot was cut to include only one screw to allow ample 

space for a recording chamber on right side of skull. The caudal left foot was intentionally left long as this 

was a large male animal and a large recording cylinder was later placed on the right side over the central 

sulcus and posterior parietal cortex. 

Figure 5. Attaching headpost to primate chair using strut clamps. A) Frontal view of headpost attached to 

primate chair using a set of three Misumi strut clamps (two with a post and one without). Each clamp is 

labeled (1, 2, and 3) with a corresponding blown-out illustration for clarity. Axes of rotation are depicted 

for each component as a line with a curved arrow. The first strut clamp (“1”) is attached to the headpost 

adaptor. The second strut clamp (“2”) is attached to the post of clamp 1. The third strut clamp (“3”) is 

attached to the post of clamp 2 and the chair adaptor which is attached to the primate chair arm and 

projects vertically. Clamp levers are used (black handles on clamps 1 and 2, and orange handles on clamp 

3) to facilitate adjustments. B) Side view of the same configuration as in A. Clamp components are

labeled as in A. Note the angle of the headpost relative to the vertical chair adaptor.

Figure 6. Design of customized recording chamber. A) Lateral view in Monkey Cicerone showing 

parasagittal MRI slice, position of recording chamber and a virtual electrode track, and an ear bar and eye 

bar (top). Verification of electrode tracks and planned recording sites in Monkey Cicerone in a coronal 

(bottom, left) and parasagittal view (bottom, right). B) Lateral view of skull STL in Meshmixer with 

recording chamber model positioned as planned. C) Inset shows four points that were selected in 

Meshmixer: three points to define the stereotaxic plane (two ear bar and one eye bar position, shown with 

orange stars) and one point to define the center of the cylinder on the skull surface (origin, marked with a 

red star). Cropped portion of skull model and three points defining the stereotaxic plane from Meshmixer 

(yellow, circled) shown after being imported into Inventor from Meshmixer (see inset). The user 

coordinate system (UCS) was defined using the origin (center of cylinder on skull surface) with the X 

axis oriented along the bore of the cylinder (in the direction of an electrode track). 

Figure 7. 3D printed headpost covers. A) Original design that screwed onto headpost from the top. B) 

Improved “igloo” design that screwed from the front of the post. C) Side view of “igloo” showing profile 

designed to approximate the curvature of the head and brow ridge. Excess material was sanded off after 

printing to ensure hat did not touch skin. 

Figure 8. Implant margin condition for all 9 cases. Conditions of the skin at the implant margin were 

categorized into four groups. Skin recession (diagonal bars) indicates the earliest signs of skin recession 

from the post, such as redness, moistness, or proliferation of granulation tissue. Metal exposure (dark 

gray) indicates from 1 to 4 mm exposure of one or more titanium feet. Screw exposure (gray cross-hatch) 
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resulted when skin recession was greater than 4 mm along a foot. Note absence of bone exposure in all 

cases regardless of degree or duration of skin recession. Asterisks (*) indicate deceased cases (see Table 

1). 

TABLES 
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TABLE 1. OVERVIEW OF HEADPOST PROCEDURES 

Step # Procedure 

Time to complete 

step 

Materials & 

Resources Notes 

1 CT scan of head ~2 hours CT scanner, Vet 
personnel 

Perform CT (slices ≤ 0.6 mm) within 6 months of new implant; bone can 
remodel quickly, especially after a previous implant is removed 

2 Create STL model 

from CT data 

< 1 hours DeVIDE or 
InVesalius 

Extract bone surface contour from CT data to produce a 3D printable model (an 
STL file). 

3 Crop and repair 

STL model 

1-3 hours NetFabb Basic and/or 
Meshmixer 

Use 3D modeling software with "STL repair" capability to crop and repair STL 
file as desired. Optional: cut digital skull model into two pieces to cut cost of 
support material used during printing. Use NetFabb to check printability of 
part(s)  

4 Print skull replica Varies (~1-3 days) 3D printer or printing 
service 

Check with printer in advance for turnaround time estimates. Recommended 
minimum 300 dpi resolution: 300 dpi (85 μm feature size). 

5 Determine 

location of 

headpost on skull 

2-3 days (do while
skull is being
printed)

Monkey Cicerone or 
SPLASH (requires 
structural MRI) 

Identify target brain areas and potential locations of recording cylinders or other 
implant hardware that will constrain headpost location. This can also be done 
using gyrus patterns on interior surface of printed skull model. 

6 Bend headpost feet 

to fit skull 

6-8 hours Gray Matter headpost 
& bending bars, skull 
replica 

Use 3D skull replica to form footed headpost before surgery. Bend slowly, 
making small incremental adjustments and working proximal to distal. Target 1-
mm maximum gap between bone and titanium. 

7 Estimate screw 

lengths 

< 30 min RadiANT DICOM 
viewer  

Measure skull thickness in DCM viewer, or drill holes in skull model and 
measure with depth gauge to estimate appropriate screw lengths. Screws threads 
must reach through both inner and outer cortical tables of bone. Pack 1-2 extra 
sets of each length of screw. 

8 Headpost implant 

surgery 

~2 hours Follow Gray Matter surgery guidelines for U-shaped incision. Drill holes quickly and smoothly with burr 
size slightly smaller than core diameter of screw. Use Fusion Bone Putty to fill gaps between bone and 
implant. Screws must seat fully into implant countersinks, but do not overtighten. 

9 Allow healing time Allow a minimum 
of 4-5 weeks, up to 
12 weeks 

Use this time to acclimate animal to lab settings, personnel and head restraint procedures. For example, 
begin by presenting headpost coupler and hovering over head, then gradually touching post, inserting 
coupler slot onto post and removing without attaching the coupler with a screw. This process can take 
several weeks with a new monkey and will save time once healed. 

10 Attach headpost to 

chair 

Headpost training 
varies (~1-2 days 
once acclimated) 

Misumi post & strut 
clamps 

Clamp angles can be modified to adjust head position and maximize animal's 
comfort in the chair. Each animal/chair combination can have it's own set of 
clamps that will rarely need adjusting once done properly. 



TABLE 2. SUBJECT INFORMATION AND TIMELINE 

Case # Sex 

Weight 

(kg) 

Age at 

implant 

(yrs) 

CT prior to 

surgery 

(days) 

STL prior to 

surgery (days) 

3D print prior to 

surgery (days) 

1 F 9.0 6.9 139 138 120 

2 M 13.0 5.6 14 14 13 

3 M 13.5 12.9 173 172 154 

4 M 9.0 29.3 155 52 35 

5 F 6.0 10.6 28 27 25 

6 M 13.0 12.9 140 29 23 

7 F 9.0 12.0 15 10 not recorded

8 F 8.0 9.1 62 not recorded not recorded

9 F 9.0 7.6 154 not recorded not recorded

Subject information and experimental timeline. Cases are numbered in chronological order of 

procedure. Ages reported are at the time of headpost implant. Timeline information is relative to 

date of headpost implant for each case: CT scan in days prior to surgery; conversion of CT data to 

digital model (STL format) and 3D printing of skull replica, also in days prior to surgery.

1 

1    TABLE 3.1. SOFTWARE 

Software URL (or contact) Cost 

DeVIDE https://graphics.tudelft.nl/devide/ Free 
InVesalius http://www.cti.gov.br/invesalius/ Free 
NetFabb Basic http://www.autodesk.com/education/free-

software/netfabb 
Free 

Meshmixer http://www.meshmixer.com/ Free 
Monkey Cicerone (contact author CCM) Free 
SPLASh (Linux) http://systems.ucdavis.edu/splash/splash.html Free 
Inventor 

http://www.autodesk.com/education/free-
software/inventor-professional 

Varies 
(Institutional 
license available) 

1 

1     TABLE 3.2. PARTS, SUPPLIERS AND PRICES 

Product Supplier and URL Part Number Cost Qty Total 

Titanium footed headpost 
Gray Matter 
http://www.graymatter-
research.com/ 

Complete 
system (DAHP-
1) $1600 1 $1600 

Bone screws ($20 ea.) 
BS-1 (specify 
size) (22 included with DAHP) 

Fusion Bone Putty (1 cc ) 

Veterinary Transplant 
Services 
https://vtsonline.com/ FXBP1cc $68 1 $68 



Clamp Levers - Threaded 
MISUMI 
https://us.misumi-
ec.com/ 

CLMS4-16-R  $15.15 2 $30 
Strut Clamps - Arm Type, P 
Selectable ALKA12-50  $22.22 2 $44 
Strut Clamps - With Clamp 
Lever, Perpendicular 
Configuration AKST12  $39.60 1 $40 

TOTAL: $1,782 
1 

TABLE 4. FACTORS THAT MAY INFLUENCE HEADPOST OR IMPLANT MARGIN OUTCOME 

Case 

# 

Lab/ 

surgeon 

Previous 

acrylic 

implant? Headpost Incision 

# of 

screws 

Healing 

time 

(weeks) 

Years 

with 

headpost 

Metal or 

screw 

exposure? 

1 1 No custom type 1 
(machined fit) midline 10 4 0.7*(de) Yes 

2 1 No DAHP-2 
(Gray Matter) midline 13 6 4.0*(de) No 

3 2 Yes DAHP-2 
(Gray Matter) U-shaped 11 12 or 

more 4.5+ Yes 

4 2 Yes DAHP-2 
(Gray Matter) U-shaped 12 12 or 

more 1.6*(dn) No 

5 3 No custom type 2 
(manually bent) U-shaped 11 5 3.8+ Yes 

6 2 Yes DAHP-2 
(Gray Matter) U-shaped 12 4 3.6+ Yes 

7 1 No DAHP-2 
(Gray Matter) U-shaped 14 not 

recorded 1.6*(de) Yes 

8 3 No custom type 2 
(manually bent) midline 11 not 

recorded 3.4+ Yes 

9 3 No custom type 2 
(manually bent) midline 11 not 

recorded 2.9+ Yes 

Factors that may influence headpost or implant margin outcomes. As in Table 2 (Subject Information), 

cases are numbered in chronological order of procedure. Refer to Table 2 for subject sex, age, and weight. 

Three animals had previously had an acrylic implant (cases 3, 4 and 6). Healing time between implant 

surgery and first attempted head restraint is reported in weeks following surgery. Total duration with 

headpost implanted is given in years. Cases indicated with an asterisk (*), 1, 4 and 7, are deceased of 

natural causes (dn) or experimental design (de). Remaining cases are currently still enrolled in studies (as 

of August 2017) and headposts are intact and used regularly. 





implant margin

implant margin

bone

bone screws
under acrylic

bone screws
under skin

implant feet
under skin

implant feet
under skin

bone screw

bone screw

skin

recording
chamber

recording
chamber

recording
chamber

recording
chamber

headpost

bone

skin

headpost

headpostacrylic implant

A.
Ac

ry
lic

 im
pl

an
t

Ac
ry

lic
-fr

ee
 im

pl
an

t
Top viewSide view

B.

C. D.

AP

AP



CT scan of head

Timeline

Create STL model from CT data

Crop and repair STL model

Print skull 
replica Determine 

location of 
headpost 
(while skull 
prints)

Bend headpost 
feet to fit skull

Estimate screw lengths

Surgery preparation

Headpost implant surgery

Allow 4-5 weeks healing time
(acclimate animal)

Attach headpost to chair
(1-2 days, once acclimated)

Day 1

2

3

4

5

6

7

Rush

2

1

3

4

5

6

7

8

9

10

12

13

14

15

16

11



A. B.

C. D.



A. B.

D.C.

F.E.



2
2 33

Headpost adaptor

Headpost adaptor

Chair arm

Chair arm adaptor

Front view Side view

1
2

3

1

1

A. B.



A.

B.

C.

eye bar point

ear bar points

origin

electrode track (axis)

eye bar

ear bar 

ear bar 

X
YZ



A.

B.

C.



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time since implant surgery (years)

1
2
3
4
5
6
7
8
9

Ca
se

 n
um

be
r

Screws exposedMetal exposure Skin recessionExcellent


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8



