50 research outputs found

    SimReg1 is a master switch for biosynthesis and export of simocyclinone D8 and its precursors

    Get PDF
    Analysis of the simocyclinone biosynthesis (sim) gene cluster of Streptomyces antibioticus Tü6040 led to the identification of a putative pathway specific regulatory gene simReg1. In silico analysis places the SimReg1 protein in the OmpR-PhoB subfamily of response regulators. Gene replacement of simReg1 from the S. antibioticus chromosome completely abolishes simocyclinone production indicating that SimReg1 is a key regulator of simocyclinone biosynthesis. Results of the DNA-shift assays and reporter gene expression analysis are consistent with the idea that SimReg1 activates transcription of simocyclinone biosynthesis, transporter genes, regulatory gene simReg3 and his own transcription. The presence of extracts (simocyclinone) from S. antibioticus Tü6040 × pSSimR1-1 could dissociate SimReg1 from promoter regions. A preliminary model for regulation of simocyclinone biosynthesis and export is discussed

    Discovery and overproduction of novel highly bioactive pamamycins through transcriptional engineering of the biosynthetic gene cluster

    Get PDF
    Background Pamamycins are a family of highly bioactive macrodiolide polyketides produced by Streptomyces alboniger as a complex mixture of derivatives with molecular weights ranging from 579 to 705 Daltons. The large derivatives are produced as a minor fraction, which has prevented their isolation and thus studies of chemical and biological properties. Results Herein, we describe the transcriptional engineering of the pamamycin biosynthetic gene cluster (pam BGC), which resulted in the shift in production profle toward high molecular weight derivatives. The pam BGC library was constructed by inserting randomized promoter sequences in front of key biosynthetic operons. The library was expressed in Streptomyces albus strain with improved resistance to pamamycins to overcome sensitivity-related host limitations. Clones with modifed pamamycin profles were selected and the properties of engineered pam BGC were studied in detail. The production level and composition of the mixture of pamamycins was found to depend on balance in expression of the corresponding biosynthetic genes. This approach enabled the isolation of known pamamycins and the discovery of three novel derivatives with molecular weights of 663 Da and higher. One of them, homopamamycin 677A, is the largest described representative of this family of natural products with an elucidated structure. The new pamamycin 663A shows extraordinary activity (IC50 2 nM) against hepatocyte cancer cells as well as strong activity (in the one-digit micromolar range) against a range of Gram-positive pathogenic bacteria. Conclusion By employing transcriptional gene cluster refactoring, we not only enhanced the production of known pamamycins but also discovered novel derivatives exhibiting promising biological activities. This approach has the potential for broader application in various biosynthetic gene clusters, creating a sustainable supply and discovery platform for bioactive natural products

    Microparticles globally reprogram Streptomyces albus toward accelerated morphogenesis, streamlined carbon core metabolism, and enhanced production of the antituberculosis polyketide pamamycin

    Get PDF
    Streptomyces spp. are a rich source for natural products with recognized industrial value, explaining the high interest to improve and streamline the performance of in these microbes. Here, we studied the production of pamamycins, macrodiolide homologs with a high activity against multiresistant pathogenic microbes, using recombinant Streptomyces albus J1074/R2. Talc particles (hydrous magnesium silicate, 3MgO·4SiO2·H2O) of micrometer size, added to submerged cultures of the recombinant strain, tripled pamamycin production up to 50 mg/L. Furthermore, they strongly affected morphology, reduced the size of cell pellets formed by the filamentous microbe during the process up to sixfold, and shifted the pamamycin spectrum to larger derivatives. Integrated analysis of transcriptome and precursor (CoA thioester) supply of particle‐enhanced and control cultures provided detailed insights into the underlying molecular changes. The microparticles affected the expression of 3,341 genes (56% of all genes), revealing a global and fundamental impact on metabolism. Morphology‐associated genes, encoding major regulators such as SsgA, RelA, EshA, Factor C, as well as chaplins and rodlins, were found massively upregulated, indicating that the particles caused a substantially accelerated morphogenesis. In line, the pamamycin cluster was strongly upregulated (up to 1,024‐fold). Furthermore, the microparticles perturbed genes encoding for CoA‐ester metabolism, which were mainly activated. The altered expression resulted in changes in the availability of intracellular CoA‐esters, the building blocks of pamamycin. Notably, the ratio between methylmalonyl CoA and malonyl‐CoA was increased fourfold. Both metabolites compete for incorporation into pamamycin so that the altered availability explained the pronounced preference for larger derivatives in the microparticle‐enhanced process. The novel insights into the behavior of S. albus in response to talc appears of general relevance to further explore and upgrade the concept of microparticle enhanced cultivation, widely used for filamentous microbes

    New Alpiniamides From Streptomyces sp. IB2014/011-12 Assembled by an Unusual Hybrid Non-ribosomal Peptide Synthetase Trans-AT Polyketide Synthase Enzyme

    Get PDF
    The environment of Lake Baikal is a well-known source of microbial diversity. The strain Streptomyces sp. IB2014/011-12, isolated from samples collected at Lake Baikal, was found to exhibit potent activity against Gram-positive bacteria. Here, we report isolation and characterization of linear polyketide alpiniamide A (1) and its new derivatives B–D (2–5). The structures of alpiniamides A–D were established and their relative configuration was determined by combination of partial Murata’s method and ROESY experiment. The absolute configuration of alpiniamide A was established through Mosher’s method. The gene cluster, responsible for the biosynthesis of alpiniamides (alp) has been identified by genome mining and gene deletion experiments. The successful expression of the cloned alp gene cluster in a heterologous host supports these findings. Analysis of the architecture of the alp gene cluster and the feeding of labeled precursors elucidated the alpiniamide biosynthetic pathway. The biosynthesis of alpiniamides is an example of a rather simple polyketide assembly line generating unusual chemical diversity through the combination of domain/module skipping and double bond migration events

    Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae

    Get PDF
    Kutzneria is a representative of a rarely observed genus of the family Pseudonocardiaceae. Kutzneria species were initially placed in the Streptosporangiaceae genus and later reconsidered to be an independent genus of the Pseudonocardiaceae. Kutzneria albida is one of the eight known members of the genus. This strain is a unique producer of the glycosylated polyole macrolide aculeximycin which is active against both bacteria and fungi. Kutzneria albida genome sequencing and analysis allow a deeper understanding of evolution of this genus of Pseudonocardiaceae, provide new insight in the phylogeny of the genus, as well as decipher the hidden secondary metabolic potential of these rare actinobacteria

    Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions

    Get PDF
    Alternative sigma factors control numerous aspects of bacterial life, including adaptation to physiological stresses, morphological development, persistence states and virulence. This is especially true for the physiologically complex actinobacteria. Here we report the development of a robust gene deletions system for Streptomyces lividans TK24 based on a BAC library combined with the λ-Red recombination technique. The developed system was validated by systematically deleting the most highly expressed genes encoding alternative sigma factors and several other regulatory genes within the chromosome of S. lividans TK24. To demonstrate the possibility of large scale genomic manipulations, the major part of the undecylprodigiosin gene cluster was deleted as well. The resulting mutant strains were characterized in terms of morphology, growth parameters, secondary metabolites production and response to thiol-oxidation and cell-wall stresses. Deletion of SLIV_12645 gene encoding S. coelicolor SigR1 ortholog has the most prominent phenotypic effect, resulted in overproduction of actinorhodin and coelichelin P1 and increased sensitivity to diamide. The secreted proteome analysis of SLIV_12645 mutant revealed SigR1 influence on trafficking of proteins involved in cell wall biogenesis and refactoring. The reported here gene deletion system will further facilitate work on S. lividans strain improvement as a host for either secondary metabolites or protein production and will contribute to basic research in streptomycetes physiology, morphological development, secondary metabolism. On the other hand, the systematic deletion of sigma factors encoding genes demonstrates the complexity and conservation of regulatory processes conducted by sigma factors in streptomycetes

    Cloning and expression of metagenomic DNA in Streptomyces lividans and subsequent fermentation for optimized production

    No full text
    The choice of an expression system for the metagenomic DNA of interest is of vital importance for the detection of any particular gene or gene cluster. Most of the screens to date have used the gram-negative bacterium Escherichia coli as a host for metagenomic gene libraries. However, the use of E. coli introduces a potential host bias since only 40 % of the enzymatic activities may be readily recovered by random cloning in E. coli. To recover some of the remaining 60 %, alternative cloning hosts such as Streptomyces spp. have been used. Streptomycetes are high-GC gram-positive bacteria belonging to the Actinomycetales and they have been studied extensively for more than 15 years as an alternative expression system. They are extremely well suited for the expression of DNA from other actinomycetes and genomes of high GC content. Furthermore, due to its high innate, extracellular secretion capacity, Streptomyces can be a better system than E. coli for the production of many extracellular proteins. In this article an overview is given about the materials and methods for growth and successful expression and secretion of heterologous proteins from diverse origin using Streptomyces lividans has a host. More in detail, an overview is given about the protocols of transformation, type of plasmids used and of vectors useful for integration of DNA into the host chromosome, and accompanying cloning strategies. In addition, various control elements for gene expression including synthetic promoters are discussed, and methods to compare their strength are described. Integration of the gene of interest under the control of the promoter of choice into S. lividans chromosome via homologous recombination using pAMR4-based system is explained. Finally a basic protocol for benchtop bioreactor experiments which can form the start in the production process optimization and upscaling is provided.status: publishe

    Targeted Genome Mining-From Compound Discovery to Biosynthetic Pathway Elucidation.

    Get PDF
    Natural products are an important source of novel investigational compounds in drug discovery. Especially in the field of antibiotics, Actinobacteria have been proven to be a reliable source for lead structures. The discovery of these natural products with activity- and structure-guided screenings has been impeded by the constant rediscovery of previously identified compounds. Additionally, a large discrepancy between produced natural products and biosynthetic potential in Actinobacteria, including representatives of the order Pseudonocardiales, has been revealed using genome sequencing. To turn this genomic potential into novel natural products, we used an approach including the in-silico pre-selection of unique biosynthetic gene clusters followed by their systematic heterologous expression. As a proof of concept, fifteen Saccharothrixespanaensis genomic library clones covering predicted biosynthetic gene clusters were chosen for expression in two heterologous hosts, Streptomyceslividans and Streptomycesalbus. As a result, two novel natural products, an unusual angucyclinone pentangumycin and a new type II polyketide synthase shunt product SEK90, were identified. After purification and structure elucidation, the biosynthetic pathways leading to the formation of pentangumycin and SEK90 were deduced using mutational analysis of the biosynthetic gene cluster and feeding experiments with 13C-labelled precursors
    corecore