1,037 research outputs found
A coded aperture imaging system optimized for hard X-ray and gamma ray astronomy
A coded aperture imaging system was designed for the Gamma-Ray imaging spectrometer (GRIS). The system is optimized for imaging 511 keV positron-annihilation photons. For a galactic center 511-keV source strength of 0.001 sq/s, the source location accuracy is expected to be + or - 0.2 deg
Quantum Lattice Fluctuations and Luminescence in C_60
We consider luminescence in photo-excited neutral C_60 using the
Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the
luminescence we use a collective coordinate method where our collective
coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon
mode and extrapolates between the ground state "dimerisation" and the exciton
polaron. There is good agreement for the existing luminescence peak spacing and
fair agreement for the relative intensity. We predict the existence of further
peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn,
36.90+
Review of road surface photometry methods and devices – Proposal for new measurement geometries
Specifications concerning road lighting and photometry of road surfaces were established more than 50 years ago. Road lighting design and road marking visibility were developed for vehicle driving. The observation distance defined by standards corresponds to interurban applications; however, within Europe these areas do not tend to be lit. The objective of the SURFACE project is to propose new geometries for the photometric characterisation of pavements, both adapted to different urban travel modes and new lighting technologies. This article reviews the available guidelines, standards, measuring devices and literature regarding geometries and road lighting applications, and presents the project SURFACE analysis and proposal. The SURFACE consortium recommends adding several new angles for different driving conditions and road users; 2.29 degrees for urban environments and consistency with road marking standard, and 1 degrees for extra-urban environment and consistency with previous geometries. A 5 degrees angle, corresponding to 17-m viewing distance, could be an interesting compromise, suitable for urban driving at low speed, cycling and for scooters. The angles of 10 degrees and 20 degrees are under consideration for describing the boundary between diffuse and specular behaviour
Refining the continuous tracking paradigm to investigate implicit motor learning.
In two experiments we investigated factors that undermine conclusions about implicit motor learning in the continuous tracking paradigm. In Experiment 1, we constructed a practice phase in which all three segments of the waveform pattern were random, in order to examine whether tracking performance decreased as a consequence of time spent on task. Tracking error was lower in the first segment than in the middle segment and lower in the middle segment than in the final segment, indicating that tracking performance decreased as a function of increasing time-on-task. In Experiment 2, the waveform pattern presented in the middle segment was identical in each trial of practice. In a retention test, tracking performance on the repeated segment was superior to tracking performance on the random segments of the waveform. Furthermore, substitution of the repeated pattern with a random pattern (in a transfer test) resulted in a significantly increased tracking error. These findings imply that characteristics of the repeated pattern were learned. Crucially, tests of pattern recognition implied that participants were not explicitly aware of the presence of a recurring segment of waveform. Recommendations for refining the continuous tracking paradigm for implicit learning research are proposed
Recommended from our members
AGL StimSelect: Software for automated selection of stimuli for artificial grammar learning
Artificial Grammar Learning (AGL) is an experimental paradigm that has been used extensively in cognitive research for many years to study implicit learning, associative learning, and generalization based either on similarity or rules. Without computer assistance it is virtually impossible to generate appropriate grammatical training stimuli along with grammatical or non-grammatical test stimuli that control relevant psychological variables. We present the first flexible, fully automated software for selecting AGL stimuli. The software allows users to specify a grammar of interest, and to manipulate characteristics of training and test sequences, and their relationship to each other. The user thus has direct control over stimulus features that may influence learning and generalization in AGL tasks. The software enables researchers to develop AGL designs that would not be feasible without automatic stimulus selection. It is implemented in Matlab
Target structure independent elastic scattering at low momentum transfers
Analyzing powers and cross sections for the elastic scattering of polarized
7Li by targets of 6Li, 7Li and 12C are shown to depend only on the properties
of the projectile for momentum transfers of less than 1.0 fm-1. The result of a
detailed analysis of the experimental data within the framework of the coupled
channels model with ground state reorientation and transitions to the excited
states of the projectile and targets included in the coupling schemes are
presented. This work suggests that nuclear properties of weakly-bound nuclei
can be tested by elastic scattering experiments, independent of the target
used, if data are acquired for momentum transfers less than ~1.0 fm-1.Comment: 9 pages, 4 figures, 1 table, accepted in Phys. Lett.
Electrochemical Formation of Germanene: pH 4.5
Germanene is a single layer allotrope of Ge, with a honeycomb structure similar to graphene. This report concerns the electrochemical formation of germanene in a pH 4.5 solution. The studies were performed using in situ Electrochemical Scanning Tunneling Microscopy (EC-STM), voltammetry, coulometry, surface X-ray diffraction (SXRD) and Raman spectroscopy to study germanene electrodeposition on Au(111) terraces. The deposition of Ge is kinetically slow and stops after 2–3 monolayers. EC-STM revealed a honeycomb (HC) structure with a rhombic unit cell, 0.44 ± 0.02 nm on a side, very close to that predicted for germanene in the literature. Ideally the HC structure is a continuous sheet, with six Ge atoms around each hole. However, only small domains, surrounded by defects, of this structure were observed in this study. The small coherence length and multiple rotations domains made direct observation with surface X-ray diffraction difficult. Raman spectroscopy was used to investigate the multi-layer Ge deposits. A peak near 290 cm^(−1), predicted to correspond to germanene, was observed on one particular area of the sample, while the rest resembled amorphous germanium. Electrochemical studies of germanene showed limited stability when exposed to oxygen
In-Plane Orbital Texture Switch at the Dirac Point in the Topological Insulator Bi2Se3
Topological insulators are novel macroscopic quantum-mechanical phase of
matter, which hold promise for realizing some of the most exotic particles in
physics as well as application towards spintronics and quantum computation. In
all the known topological insulators, strong spin-orbit coupling is critical
for the generation of the protected massless surface states. Consequently, a
complete description of the Dirac state should include both the spin and
orbital (spatial) parts of the wavefunction. For the family of materials with a
single Dirac cone, theories and experiments agree qualitatively, showing the
topological state has a chiral spin texture that changes handedness across the
Dirac point (DP), but they differ quantitatively on how the spin is polarized.
Limited existing theoretical ideas predict chiral local orbital angular
momentum on the two sides of the DP. However, there have been neither direct
measurements nor calculations identifying the global symmetry of the spatial
wavefunction. Here we present the first results from angle-resolved
photoemission experiment and first-principles calculation that both show,
counter to current predictions, the in-plane orbital wavefunctions for the
surface states of Bi2Se3 are asymmetric relative to the DP, switching from
being tangential to the k-space constant energy surfaces above DP, to being
radial to them below the DP. Because the orbital texture switch occurs exactly
at the DP this effect should be intrinsic to the topological physics,
constituting an essential yet missing aspect in the description of the
topological Dirac state. Our results also indicate that the spin texture may be
more complex than previously reported, helping to reconcile earlier conflicting
spin resolved measurements
- …