23 research outputs found

    Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment

    Get PDF
    The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast, CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe. © 2011 Elsevier Ltd. All rights reserved

    Current Mathematical Methods Used in QSAR/QSPR Studies

    Get PDF
    This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR) studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP), Project Pursuit Regression (PPR) and Local Lazy Regression (LLR) have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR), Partial Least Squares (PLS), Neural Networks (NN), Support Vector Machine (SVM) and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future

    Evolution study of the Baeyer-Villiger monooxygenases enzyme family: functional importance of the highly conserved residues.

    Get PDF
    International audienceBaeyer-Villiger monooxygenases (BVMOs) catalyze the transformation of linear and cyclic ketones into their corresponding esters and lactones by introducing an oxygen atom into a C-C bond. This bioreaction has numerous advantages compared to its chemical version; it does not induce the use of potentially harmful reagents (i.e., green chemistry) and displays significant better enantio- and regio-selectivity. New potential BVMOs were searched using sequence homology for type I BVMO proteins. 116 new sequences were identified as new putative BVMOs respecting the defined selection criteria. Multiple sequence alignments were carried out on the selected sequences to study the conservation of structurally and/or functionally important amino acids during evolution. Type I BVMO signature motif was found to be conserved in 94.8% of the sequences. We noticed also the highly conserved - but previously unnoticed - Threonine 167 (93.1%), located in the signature motif; this position could be added in the pattern used to characterize specific Type I enzymes. Amino acids at the vicinity of the FAD and NADPH cofactors were found also to be highly conserved and the details of the interactions were emphasized. Interestingly, residues at the enzyme binding site were found less conserved in terms of sequence evolution, leading sometimes to some important amino acid changes. These behaviors could explain the enzyme selectivity and specificity for different ligands

    β-Bulges: extensive structural analyses of β-sheets irregularities.

    No full text
    International audienceβ-Sheets are quite frequent in protein structures and are stabilized by regular main-chain hydrogen bond patterns. Irregularities in β-sheets, named β-bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β-strands. They are implicated in protein-protein interactions and are introduced to avoid β-strand aggregation. Five different types of β-bulges are defined. Previous studies on β-bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β-bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β-bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574-1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β-bulges are preferably localized at the N- and C-termini of β-strands, but contrary to the earlier studies, no significant conservation of β-bulges was observed among structural homologues. Displacement of β-bulges along the sequence was also investigated by Molecular Dynamics simulations

    Cis-trans isomerization of omega dihedrals in proteins.

    No full text
    International audiencePeptide bonds in protein structures are mainly found in trans conformation with a torsion angle ω close to 180°. Only a very low proportion is observed in cis conformation with ω angle around 0°. Cis-trans isomerization leads to local conformation changes which play an important role in many biological processes. In this paper, we reviewed the recent discoveries and research achievements in this field. First, we presented some interesting cases of biological processes in which cis-trans isomerization is directly implicated. It is involved in protein folding and various aspect of protein function like dimerization interfaces, autoinhibition control, channel gating, membrane binding. Then we reviewed conservation studies of cis peptide bonds which emphasized evolution constraints in term of sequence and local conformation. Finally we made an overview of the numerous molecular dynamics studies and prediction methodologies already developed to take into account this structural feature in the research area of protein modeling. Many cis peptide bonds have not been recognized as such due to the limited resolution of the data and to the refinement protocol used. Cis-trans proline isomerization reactions represents a vast and promising research area that still needs to be further explored for a better understanding of isomerization mechanism and improvement of cis peptide bond predictions

    Investigation of the impact of PTMs on the protein backbone conformation

    No full text
    International audiencePost-Translational Modifications (PTMs) are known to play a critical role in the regulation of the protein functions. Their impact on protein structures, and their link to disorder regions have already been spotted on the past decade. Nonetheless, the high diversity of PTMs types, and the multiple schemes of protein modifications (multiple PTMs, of different types, at different time, etc) make difficult the direct confrontation of PTM annotations and protein structures data.We so analyzed the impact of the residue modifications on the protein structures at local level. Thanks to a dedicated structure database, namely PTM-SD, a large screen of PTMs have been done and analyze at a local protein conformation levels using the structural alphabet Protein Blocks (PBs). We investigated the relation between PTMs and the backbone conformation of modified residues, of their local environment, and at the level of the complete protein structure. The two main PTM types (N-glycosylation and phosphorylation) have been studied in non-redundant datasets, and then, 4 different proteins were focused, covering 3 types of PTMs: N-glycosylation in renin endopeptidase and liver carboxylesterase, phosphorylation in cyclin-dependent kinase 2 (CDK2), and methylation in actin. We observed that PTMs could either stabilize or destabilize the backbone structure, at a local and global scale, and that these effects depend on the PTM types

    Enzymatic Synthesis of Galactosylated Serine/Threonine Derivatives by β-Galactosidase from Escherichia coli

    No full text
    The transgalactosylations of serine/threonine derivatives were investigated using β-galactosidase from Escherichia coli as biocatalyst. Using ortho-nitrophenyl-β-D-galactoside as donor, the highest bioconversion yield of transgalactosylated N-carboxy benzyl L-serine benzyl ester (23.2%) was achieved in heptane:buffer medium (70:30), whereas with the lactose, the highest bioconversion yield (3.94%) was obtained in the buffer reaction system. The structures of most abundant galactosylated serine products were characterized by MS/MS. The molecular docking simulation revealed that the binding of serine/threonine derivatives to the enzyme’s active site was stronger (−4.6~−7.9 kcal/mol) than that of the natural acceptor, glucose, and mainly occurred through interactions with aromatic residues. For N-tert-butoxycarbonyl serine methyl ester (6.8%) and N-carboxybenzyl serine benzyl ester (3.4%), their binding affinities and the distances between their hydroxyl side chain and the 1′-OH group of galactose moiety were in good accordance with the quantified bioconversion yields. Despite its lower predicted bioconversion yield, the high experimental bioconversion yield obtained with N-carboxybenzyl serine methyl ester (23.2%) demonstrated the importance of the thermodynamically-driven nature of the transgalactosylation reaction

    iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach

    No full text
    International audienceBackground: Protein 3D structure is the support of its function. Comparison of 3D protein structures provides insight on their evolution and their functional specificities and can be done efficiently via protein structure superimposition analysis. Multiple approaches have been developed to perform such task and are often based on structural superimposition deduced from sequence alignment, which does not take into account structural features. Our methodology is based on the use of a Structural Alphabet (SA), i.e. a library of 3D local protein prototypes able to approximate protein backbone. The interest of a SA is to translate into 1D sequences into the 3D structures. Results: We used Protein blocks (PB), a widely used SA consisting of 16 prototypes, each representing a conformation of the pentapeptide skeleton defined in terms of dihedral angles. Proteins are described using PB from which we have previously developed a sequence alignment procedure based on dynamic programming with a dedicated PB Substitution Matrix. We improved the procedure with a specific two-step search: (i) very similar regions are selected using very high weights and aligned, and (ii) the alignment is completed (if possible) with less stringent parameters. Our approach, iPBA, has shown to perform better than other available tools in benchmark tests. To facilitate the usage of iPBA, we designed and implemented iPBAvizu, a plugin for PyMOL that allows users to run iPBA in an easy way and analyse protein superimpositions. Conclusions: iPBAvizu is an implementation of iPBA within the well-known and widely used PyMOL software. iPBAvizu enables to generate iPBA alignments, create and interactively explore structural superimposition, and assess the quality of the protein alignments
    corecore