59 research outputs found

    Restarting the conversation: challenges at the interface between ecology and society

    Get PDF
    8 páginas, 3 figuras, 2 tablas. -- Copyright by the Ecological Society of AmericaThe exchange of information between researchers, resource managers, decision makers, and the general public has long been recognized as a critical need in environmental science. We examine the challenges in using ecological knowledge to inform society and to change societal actions, and identify a set of options and strategies to enhance this exchange. Our objectives are to provide background information on societal knowledge and interest in science and environmental issues, to describe how different components of society obtain information and develop their interests and values, and to present a framework for evaluating and improving communication between science and society. Our analysis strongly suggests that the interface between science and society can only be improved with renewed dedication to public outreach and a wholesale reconsideration of the way that scientists communicate with society. Ecologists need to adopt new models of engagement with their audiences, frame their results in ways that are more meaningful to these audiences, and use new communication tools, capable of reaching large and diverse target groups.Este artículo está basado en unas presentaciones orales realizadas en 2009 Cary Conference. The Cary Conference fue financiada por la National Science Foundation (subvención #DEB-0840224 y #0949558), el US Department of Agriculture (USDA) Forest Service (subvención #09-DG-11132650-083), el US Environmental Protection Agency (subvención #EP09H000638), y el USDA Agriculture and Food Research Initiative Program.Peer reviewe

    Restarting the conversation: challenges at the interface between ecology and society

    Get PDF
    The exchange of information between researchers, resource managers, decision makers, and the general public has long been recognized as a critical need in environmental science. We examine the challenges in using ecological knowledge to inform society and to change societal actions, and identify a set of options and strategies to enhance this exchange. Our objectives are to provide background information on societal knowledge and interest in science and environmental issues, to describe how different components of society obtain information and develop their interests and values, and to present a framework for evaluating and improving communication between science and society. Our analysis strongly suggests that the interface between science and society can only be improved with renewed dedication to public outreach and a wholesale reconsideration of the way that scientists communicate with society. Ecologists need to adopt new models of engagement with their audiences, frame their results in ways that are more meaningful to these audiences, and use new communication tools, capable of reaching large and diverse target groups

    Diurnal, seasonal, and annual trends in tropospheric CO in Southwest London during 2000–2015: Wind sector analysis and comparisons with urban and remote sites

    Get PDF
    Ambient carbon monoxide (CO) and meteorological parameters measured at the Egham (EGH) semi-rural site in SW London during 2000–2015 have permitted wind sector analysis of diurnal and seasonal cycles, and interpretation of long-term trends. CO daily amplitudes are used as a proxy for anthropogenic emissions. At EGH, morning and evening peaks in CO arise from the dominant contribution of road transport sources. Smaller amplitudes are observed during weekends than weekdays due to lower combustion emissions, and for mornings compared to evenings due to the timing of the development and break-up of the nocturnal inversion layer or planetary boundary layer (PBL). A wavelet transform revealed that the dominant mode of CO variability is the annual cycle, with apparent winter maxima likely due to increased CO emissions from domestic heating with summer minima ascribed to enhanced dispersion and dilution during the annual maximum of PBL mixing heights. Over the last two decades, both mitigation measures to reduce CO emissions and also a major switch to diesel cars, have accompanied a change at EGH from the dominance of local diurnal sources to a site measuring close to Atlantic background levels in summer months. CO observed in the S and SW wind sectors has declined by 4.7 and 5.9 ppb yr−1 respectively. The EGH CO record shows the highest levels in the early 2000s, with levels in E and calm winds comparable to those recorded at background stations in Greater London. However, since 2012, levels in S-SW sector have become more comparable with Mace Head background except during rush-hour periods. Marked declines in CO are observed during 2000–2008 for the NE, E, SE (London) and calm wind sectors, with the smallest declines observed for the S, SW and W (background) sectors. For the majority of wind sectors, the decline in CO is less noticeable since 2008, with an apparent stabilisation for NE, E and SE after 2009. The EGH CO data record exhibits a similar but slower exponential decay, but from a much lower starting concentration, than do CO data recorded at selected monitoring sites in urban areas in SE England. CO/CO2 residuals determined using a 1 h window data in the diurnal cycle demonstrate a clear decline in CO from 2000 to 2015 during daily periods of increased vehicle traffic, which is consistent with a sustained reduction in CO emissions from the road transport sector

    Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy:method development and first intercomparison results

    Get PDF
    In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition

    The rate of telomere loss is related to maximum lifespan in birds

    Get PDF
    Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'

    δ13C methane source signatures from tropical wetland and rice field emissions

    Get PDF
    The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’

    Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions

    Get PDF
    In-flight measurements of atmospheric methane (CH4(a)) and mass balance flux quantification studies can assist with verification and improvement in the UNFCCC National Inventory reported CH4 emissions. In the Surat Basin gas fields, Queensland, Australia, coal seam gas (CSG) production and cattle farming are two of the major sources of CH4 emissions into the atmosphere. Because of the rapid mixing of adjacent plumes within the convective boundary layer, spatially attributing CH4(a) mole fraction readings to one or more emission sources is difficult. The primary aims of this study were to use the CH4(a) isotopic composition (13CCH4(a)) of in-flight atmospheric air (IFAA) samples to assess where the bottom-up (BU) inventory developed specifically for the region was well characterised and to identify gaps in the BU inventory (missing sources or over- and underestimated source categories). Secondary aims were to investigate whether IFAA samples collected downwind of predominantly similar inventory sources were useable for characterising the isotopic signature of CH4 sources (13CCH4(s)) and to identify mitigation opportunities. IFAA samples were collected between 100-350m above ground level (ma.g.l.) over a 2-week period in September 2018. For each IFAA sample the 2h back-trajectory footprint area was determined using the NOAA HYSPLIT atmospheric trajectory modelling application. IFAA samples were gathered into sets, where the 2h upwind BU inventory had >50% attributable to a single predominant CH4 source (CSG, grazing cattle, or cattle feedlots). Keeling models were globally fitted to these sets using multiple regression with shared parameters (background-air CH4(b) and 13CCH4(b)). For IFAA samples collected from 250-350ma.g.l. altitude, the best-fit 13CCH4(s) signatures compare well with the ground observation: CSG 13CCH4(s) of -55.4‰ (confidence interval (CI) 95%±13.7‰) versus 13CCH4(s) of -56.7‰ to -45.6‰; grazing cattle 13CCH4(s) of -60.5‰ (CI 95%±15.6‰) versus -61.7‰ to -57.5‰. For cattle feedlots, the derived 13CCH4(s) (-69.6‰, CI 95%±22.6‰), was isotopically lighter than the ground-based study (13CCH4(s) from -65.2‰ to -60.3‰) but within agreement given the large uncertainty for this source. For IFAA samples collected between 100-200ma.g.l. the 13CCH4(s) signature for the CSG set (-65.4‰, CI 95%±13.3‰) was isotopically lighter than expected, suggesting a BU inventory knowledge gap or the need to extend the population statistics for CSG 13CCH4(s) signatures. For the 100-200ma.g.l. set collected over grazing cattle districts the 13CCH4(s) signature (-53.8‰, CI 95%±17.4‰) was heavier than expected from the BU inventory. An isotopically light set had a low 13CCH4(s) signature of -80.2‰ (CI 95%±4.7‰). A CH4 source with this low 13CCH4(s) signature has not been incorporated into existing BU inventories for the region. Possible sources include termites and CSG brine ponds. If the excess emissions are from the brine ponds, they can potentially be mitigated. It is concluded that in-flight atmospheric 13CCH4(a) measurements used in conjunction with endmember mixing modelling of CH4 sources are powerful tools for BU inventory verification
    corecore