145 research outputs found

    Positive Carotenoid Balance Correlates with Greater Reproductive Performance in a Wild Bird

    Get PDF
    Background: Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual’s ability to increase or sustain carotenoids or other health-related molecules over time, as these are likely to be temporally variable. Methodology/Principal Findings: In a field study of North American barn swallows (Hirundo rustica erythrogaster), we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1) timing of breeding and (2) sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. Conclusions/Significance: While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet), or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures and morphological traits we uncover here merit further examination in other species, especially when goals include the estimation of signal information content or the costs of trait expression

    Positive Carotenoid Balance Correlates with Greater Reproductive Performance in a Wild Bird

    Get PDF
    Background: Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual’s ability to increase or sustain carotenoids or other healthrelated molecules over time, as these are likely to be temporally variable. Methodology/Principal Findings: In a field study of North American barn swallows (Hirundo rustica erythrogaster), we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1) timing of breeding and (2) sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. Conclusions/Significance: While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet), or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures an

    The importance of cross-validation, accuracy, and precision for measuring plumage color: A comment on Vaquero-Alba et al. (2016)

    Get PDF
    Vaquero-Alba and colleagues published a study in The Auk: Ornithological Advances comparing objective color measurements of plumage taken in the field directly on a bird’s body to those taken in the lab on collected feathers arranged to emulate the appearance of a bird’s natural plumage. Although the field measures of plumage color were less repeatable than lab measures, the authors concluded that measurements taken in the field were more representative of a bird’s ‘‘true color.’’ Accordingly, they recommend that researchers should bring spectrophotometers into the field to measure color on live birds. We question the assumption that their field measurements represent true color and highlight concerns regarding their experimental design and methodology. Because they did not measure color of live birds in the lab or the color of plucked feathers in the field, they cannot directly test whether the assessment of color in the field on a live bird is superior. Also, rather than assume field measures are the most accurate or precise way to assess plumage color, we suggest cross-validation with other methodologies, such as digital photography, pigment biochemistry, or measures of a known color standard in both environments. Importantly, researchers should be aware of the limitations and advantages of various methods for measuring plumage color so they can use the method most appropriate for their study. Vaquero-Alba y sus colaboradores publicaron un estudio en The Auk comparando medidas objetivas del color del plumaje tomadas en el campo directamente en el cuerpo del ave con medidas tomadas en el laboratorio en plumas recolectadas y organizadas para emular la apariencia natural del plumaje. Aunque las medidas de campo del color del plumaje fueron menos repetibles que las de laboratorio, los autores concluyeron que las medidas tomadas en el campo fueron ma´s representativas del ‘‘color verdadero’’ de un ave. En consecuencia, recomendaron que los investigadores deben llevar espectrofot ´ ometros a los sitios de campo para medir el color en aves vivas. Cuestionamos la suposici ´on de que sus mediciones de campo representan el ‘‘color verdadero’’ y resaltamos nuestras preocupaciones con respecto a su dise ˜no experimental y metodolog´ıa. Debido a que ellos no midieron el color de las aves vivas en el laboratorio ni el color de las plumas sueltas en el campo, no pueden evaluar directamente si la evaluaci ´on del color en el campo en un ave viva es superior. Tambi´en, en vez de asumir que las medidas de campo son la forma ma´s exacta o precisa de determinar el color del plumaje, sugerimos que se haga una validaci ´on cruzada con otras metodolog´ıas como la fotograf´ıa digital, la bioqu´ımica de los pigmentos o las medidas de un esta´ndar de un color conocido en ambos ambientes. Es importante que los investigadores tengan en cuenta las limitaciones y avances en varios m´etodos para medir el color del plumaje para que puedan usar el m´etodo ma´s apropiado para su estudio

    The importance of cross-validation, accuracy, and precision for measuring plumage color: A comment on Vaquero-Alba et al. (2016)

    Get PDF
    Vaquero-Alba and colleagues published a study in The Auk: Ornithological Advances comparing objective color measurements of plumage taken in the field directly on a bird’s body to those taken in the lab on collected feathers arranged to emulate the appearance of a bird’s natural plumage. Although the field measures of plumage color were less repeatable than lab measures, the authors concluded that measurements taken in the field were more representative of a bird’s ‘‘true color.’’ Accordingly, they recommend that researchers should bring spectrophotometers into the field to measure color on live birds. We question the assumption that their field measurements represent true color and highlight concerns regarding their experimental design and methodology. Because they did not measure color of live birds in the lab or the color of plucked feathers in the field, they cannot directly test whether the assessment of color in the field on a live bird is superior. Also, rather than assume field measures are the most accurate or precise way to assess plumage color, we suggest cross-validation with other methodologies, such as digital photography, pigment biochemistry, or measures of a known color standard in both environments. Importantly, researchers should be aware of the limitations and advantages of various methods for measuring plumage color so they can use the method most appropriate for their study. Vaquero-Alba y sus colaboradores publicaron un estudio en The Auk comparando medidas objetivas del color del plumaje tomadas en el campo directamente en el cuerpo del ave con medidas tomadas en el laboratorio en plumas recolectadas y organizadas para emular la apariencia natural del plumaje. Aunque las medidas de campo del color del plumaje fueron menos repetibles que las de laboratorio, los autores concluyeron que las medidas tomadas en el campo fueron ma´s representativas del ‘‘color verdadero’’ de un ave. En consecuencia, recomendaron que los investigadores deben llevar espectrofot ´ ometros a los sitios de campo para medir el color en aves vivas. Cuestionamos la suposici ´on de que sus mediciones de campo representan el ‘‘color verdadero’’ y resaltamos nuestras preocupaciones con respecto a su dise ˜no experimental y metodolog´ıa. Debido a que ellos no midieron el color de las aves vivas en el laboratorio ni el color de las plumas sueltas en el campo, no pueden evaluar directamente si la evaluaci ´on del color en el campo en un ave viva es superior. Tambi´en, en vez de asumir que las medidas de campo son la forma ma´s exacta o precisa de determinar el color del plumaje, sugerimos que se haga una validaci ´on cruzada con otras metodolog´ıas como la fotograf´ıa digital, la bioqu´ımica de los pigmentos o las medidas de un esta´ndar de un color conocido en ambos ambientes. Es importante que los investigadores tengan en cuenta las limitaciones y avances en varios m´etodos para medir el color del plumaje para que puedan usar el m´etodo ma´s apropiado para su estudio

    Cognitive Phenotypes and the Evolution of Animal Decisions

    Get PDF
    Despite the clear fitness consequences of animal decisions, the science of animal decision making in evolutionary biology is underdeveloped compared with decision science in human psychology. Specifically, the field lacks a conceptual framework that defines and describes the relevant components of a decision, leading to imprecise language and concepts. The ‘judgment and decision-making’ (JDM) framework in human psychology is a powerful tool for framing and understanding human decisions, and we apply it here to components of animal decisions, which we refer to as ‘cognitive phenotypes’. We distinguish multiple cognitive phenotypes in the context of a JDM framework and highlight empirical approaches to characterize them as evolvable traits

    Cognitive Phenotypes and the Evolution of Animal Decisions

    Get PDF
    Despite the clear fitness consequences of animal decisions, the science of animal decision making in evolutionary biology is underdeveloped compared with decision science in human psychology. Specifically, the field lacks a conceptual framework that defines and describes the relevant components of a decision, leading to imprecise language and concepts. The ‘judgment and decision-making’ (JDM) framework in human psychology is a powerful tool for framing and understanding human decisions, and we apply it here to components of animal decisions, which we refer to as ‘cognitive phenotypes’. We distinguish multiple cognitive phenotypes in the context of a JDM framework and highlight empirical approaches to characterize them as evolvable traits

    A multidimensional framework to quantify the effects of urbanization on avian breeding fitness

    Get PDF
    Urbanization has dramatically altered Earth's landscapes and changed a multitude of environmental factors. This has resulted in intense land-use change, and adverse consequences such as the urban heat island effect (UHI), noise pollution, and artificial light at night (ALAN). However, there is a lack of research on the combined effects of these environmental factors on life-history traits and fitness, and on how these interactions shape food resources and drive patterns of species persistence. Here, we systematically reviewed the literature and created a comprehensive framework of the mechanistic pathways by which urbanization affects fitness and thus favors certain species. We found that urbanization-induced changes in urban vegetation, habitat quality, spring temperature, resource availability, acoustic environment, nighttime light, and species behaviors (e.g., laying, foraging, and communicating) influence breeding choices, optimal time windows that reduce phenological mismatch, and breeding success. Insectivorous and omnivorous species that are especially sensitive to temperature often experience advanced laying behaviors and smaller clutch sizes in urban areas. By contrast, some granivorous and omnivorous species experience little difference in clutch size and number of fledglings because urban areas make it easier to access anthropogenic food resources and to avoid predation. Furthermore, the interactive effect of land-use change and UHI on species could be synergistic in locations where habitat loss and fragmentation are greatest and when extreme-hot weather events take place in urban areas. However, in some instances, UHI may mitigate the impact of land-use changes at local scales and provide suitable breeding conditions by shifting the environment to be more favorable for species' thermal limits and by extending the time window in which food resources are available in urban areas. As a result, we determined five broad directions for further research to highlight that urbanization provides a great opportunity to study environmental filtering processes and population dynamics
    • …
    corecore