6 research outputs found

    Data from: Quantifying the importance of geographic replication and representativeness when estimating demographic rates, using a coastal species as a case study

    No full text
    Demographic rates are rarely estimated over an entire species range, limiting empirical tests of ecological patterns and theories, and raising questions about the representativeness of studies that use data from a small part of a range. The uncertainty that results from using demographic rates from just a few sites is especially pervasive in population projections, which are critical for a wide range of questions in ecology and conservation. We developed a simple simulation to quantify how this lack of geographic representativeness can affect inferences about the global mean and variance of growth rates, which has implications for the robust design of a wide range of population studies. Using a coastal songbird, saltmarsh sparrow (Ammodramus caudacutus), as a case study, we first estimated survival, fecundity, and population growth rates at 21 sites distributed across much of their breeding range. We then subsampled this large, representative dataset according to five sampling scenarios in order to simulate a variety of geographic biases in study design. We found spatial variation in demographic rates, but no large systematic patterns. Estimating the global mean and variance of growth rates using subsets of the data suggested that at least 10-15 sites were required for reasonably unbiased estimates, highlighting how relying on demographic data from just a few sites can lead to biased results when extrapolating across a species range. Sampling at the full 21 sites, however, offered diminishing returns, raising the possibility that for some species accepting some geographical bias in sampling can still allow for robust range-wide inferences. The sub-sampling approach presented here, while conceptually simple, could be used with both new and existing data to encourage efficiency in the design of long-term or large-scale ecological studies

    Exogenous transforming growth factor beta1 replacement and fertility in male Tgfb1 null mutant mice

    No full text
    © CSIRO 2009Analysis of Tgfb1 null mutant mice has demonstrated that the cytokine transforming growth factor beta1 (TGFB1) has essential non-redundant roles in fertility. The present study attempted to alleviate the infertility phenotype of Tgfb1 null mutant male mice by administration of exogenous TGFB1, either orally by colostrum feeding or subcutaneously by delivery of recombinant human latent TGFB1 (rhLTGFB1) via osmotic mini-pumps. Bovine colostrum and fresh unpasteurised bovine milk were found to be rich sources of TGFB1 and TGFB2; however, feeding Tgfb1 null mutant mice colostrum for 2 days failed to raise serum levels of TGFB1. Administration of rhLTGFB1 (approximately 150 microg in total) over 14 days to Tgfb1 null mutant mice resulted in detectable TGFB1 in serum; however, mean levels remained 10-fold less than in Tgfb1 heterozygous mice. After 7 days and 14 days of rhLTGFB1 administration, serum testosterone, spontaneous non-contact erections and mating behaviour were assessed. Despite the increased serum TGFB1, administration of rhLTGFB1 to Tgfb1 null mutant mice failed to improve these fertility parameters. It is concluded that sustained restoration of circulating latent TGFB1 to levels approaching the normal physiological range does not rescue the infertility phenotype caused by TGFB1 deficiency. Reproductive function in male Tgfb1 null mutant mice may not respond to systemic TGFB1 supplementation due to a requirement for local sources of TGFB1 at the site of action in the reproductive tract, or perturbed development during the neonatal period or puberty such that adult reproductive function is permanently impaired.Leanne J. McGrath, Wendy V. Ingman, Rebecca L. Robker and Sarah A. Robertso
    corecore