32 research outputs found

    Molecular evolution of dengue type 2 virus in Thailand

    Get PDF
    Dengue is a mosquito-borne viral infection that in recent years has become a major international public health concern. Dengue hemorrhagic fever (DHF), first recognized in Southeast Asia in the 1950s, is today a leading cause of childhood death in many countries. The pathogenesis of this illness is poorly understood, mainly because there are no laboratory or animal models of disease. We have studied the genetic relationships of dengue viruses of serotype 2, one of four antigenically distinct dengue virus groups, to determine if viruses obtained from cases of less severe dengue fever (DF) have distinct evolutionary origins from those obtained from DHF cases. A very large number (73) of virus samples from patients with DF or DHF in two locations in Thailand (Bangkok and Kamphaeng Phet) were compared by sequence analysis of 240 nucleotides from the envelope/nonstructural protein 1 (E/NS1) gene junction of the viral genome. Phylogenetic trees generated with these data have been shown to reflect long-term evolutionary relationships among strains. The results suggest that 1) many different virus variants may circulate simultaneously in Thailand, thus reflecting the quasispecies nature of these RNA viruses, in spite of population immunity; 2) viruses belonging to two previously distinct genotypic groups have been isolated from both DF and DHF cases, supporting the view that they arose from a common progenitor and share the potential to cause severe disease; and 3) viruses associated with the potential to cause DHF segregate into what is now one, large genotypic group and they have evolved independently in Southeast Asia for some time

    Variation in Vector Competence for Dengue Viruses Does Not Depend on Mosquito Midgut Binding Affinity

    Get PDF
    Several factors, such as mosquito and virus genetics and environmental variables, determine the ability of mosquitoes to transmit dengue viruses. In this report, we describe new and important information that in some ways contradicts what is in the literature. Midgut infection barriers have been described as important determinants of virus transmission in mosquitoes but we found that virus binding to these midgut cells does not vary. When we compared binding of 8 different, low passage dengue viruses to mosquito midguts that were dissected out of Aedes aegypti mosquitoes (the main vectors of dengue) from Mexico and Texas, we found that there were no differences. Previously, we (and others) had shown that these same viruses differed significantly in replication and dissemination throughout the rest of the mosquito body, including the salivary glands, and therefore they differed greatly in their potential to be transmitted to humans. Thus, the data presented here are important considerations for future studies of vector competence and in determining strategies for control of dengue viruses in the vector

    Viral and Epidemiological Determinants of the Invasion Dynamics of Novel Dengue Genotypes

    Get PDF
    Dengue fever and the more severe dengue haemorrhagic fever and dengue shock syndrome are mosquito borne viral infections that have seen a major increase in terms of global distribution and total case numbers over the last few decades. There are currently four antigenically distinct and potentially co-circulating dengue serotypes and each serotype shows substantial genetic diversity, organised into phylogenetically distinct genotypes or lineages. While there is some evidence for positive selection, the evolutionary dynamics of dengue virus (DENV) is supposed to be mostly dominated by purifying selection due to the constraints imposed by its two-host life-cycle. Motivated by a recent genotype replacement event whereby the resident American/Asian lineage of dengue virus serotype 2 (DENV2) had been displaced by the fitter Asian-1 lineage we investigated some of the epidemiological factors that might determine the success and invasion dynamics of a novel, advantageous dengue genotype. Our results show that although small differences in viral fitness can explain the rapid expansion and fixation of novel genotypes, their fate is ultimately determined by the epidemiological landscape in which they arise

    Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia

    Get PDF
    A better description of the extent and structure of genetic diversity in dengue virus (DENV) in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs

    Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas

    Get PDF
    Neglected tropical diseases (NTDs) have\ud been recently identified as significant public\ud health problems in Texas and elsewhere in\ud the American South. A one-day forum on the\ud landscape of research and development and\ud the hidden burden of NTDs in Texas\ud explored the next steps to coordinate advocacy,\ud public health, and research into a\ud cogent health policy framework for the\ud American NTDs. It also highlighted how\ud U.S.-funded global health research can serve\ud to combat these health disparities in the\ud United States, in addition to benefiting\ud communities abroad

    Ancient Ancestry of KFDV and AHFV Revealed by Complete Genome Analyses of Viruses Isolated from Ticks and Mammalian Hosts

    Get PDF
    Alkhurma hemorrhagic fever (AHF) and Kyasanur Forest disease (KFD) viruses both cause serious and sometimes fatal human disease in their respective ranges, Saudi Arabia and India. AHFV was first identified in the mid-1990s and due to its strong genetic similarity to KFDV it has since been considered the result of a recent introduction of KFDV into Saudi Arabia. To gain a better understanding of the evolutionary history of AHFV and KFDV, we sequenced the full-length genomes of 3 KFDV and 16 AHFV. Sequence analyses show a greater genetic diversity within AHFV than previously thought, particularly within the tick population. The phylogeny constructed with these 19 full-length sequences and two AHFV sequences from GenBank indicates AHFV diverged from KFDV almost 700 years ago. Given the presence of competent tick vectors in the regions between and surrounding Saudi Arabia and India and the recent identification of AHFV in Egypt, these results suggest a broader geographic range of AHFV and KFDV, and raise the possibility of other AHFV/KFDV–like viruses circulating in these regions

    Host Alternation Is Necessary to Maintain the Genome Stability of Rift Valley Fever Virus

    Get PDF
    Arthropod-borne viruses are transmitted among vertebrate hosts by insect vectors. Unusually, Rift Valley fever virus (RVFV) can also be transmitted by direct contacts of animals/humans with infectious tissues. What are the molecular mechanisms and evolutionary events leading to adopt one mode of transmission rather than the other? Viral replication is implied to be different in a vertebrate host and an invertebrate host. The alternating host cycle tends to limit virus evolution by adopting a compromise fitness level for replication in both hosts. To test this hypothesis, we used a cell culture model system to study the evolution of RVFV. We found that freeing RVFV from alternating replication in mammalian and mosquito cells led to large deletions in the NSs gene carrying the virulence factor. Resulting NSs-truncated viruses were able to protect mice from a challenge with a virulent RVFV. Thus, in nature, virulence is likely maintained by continuous alternating passages between vertebrates and insects. Thereby, depending on the mode of transmission adopted, the evolution of RVFV will be of major importance to predict the outcome of outbreaks

    Inhibition of Dengue Virus Entry and Multiplication into Monocytes Using RNA Interference

    Get PDF
    Prevention and treatment of dengue infection remain a serious global public health priority. Extensive efforts are required toward the development of vaccines and discovery of potential therapeutic compounds against the dengue viruses. Dengue virus entry is a critical step for virus reproduction and establishes the infection. Hence, the blockade of dengue virus entry into the host cell is an interesting antiviral strategy as it represents a barrier to suppress the onset of infection. This study was achieved by using RNA interference to silence the cellular receptor, and the clathrin mediated endocytosis that enhances the entry of dengue virus in monocytes. Results showed a marked reduction of infected monocytes by flow cytometry. In addition, both intracellular and extracellular viral RNA load was shown to be reduced in treated monocytes when compared to untreated monocytes. Based on these findings, this study concludes that this therapeutic strategy of blocking the virus replication at the first stage of multiplication might serve as a hopeful drug to mitigate the dengue symptoms, and reduction the disease severity

    In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection

    Get PDF
    Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization

    Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing

    Get PDF
    Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness
    corecore