112 research outputs found

    Temporal profile of intestinal tissue expression of intestinal fatty acid-binding protein in a rat model of necrotizing enterocolitis

    Get PDF
    OBJECTIVES: Necrotizing enterocolitis is a severe multifactorial intestinal disorder that primarily affects preterm newborns, causing 20-40% mortality and morbidity. Intestinal fatty acid-binding protein has been reported to be a biomarker for the detection of intestinal injuries. Our aim was to assess intestinal tissue injury and the molecular expression of intestinal fatty acid-binding protein over time in a necrotizing enterocolitis model. METHODS: A total of 144 Newborn rats were divided into two groups: 1) Control, which received breastfeeding (n=72) and 2) Necrotizing Enterocolitis, which received formula feeding and underwent hypoxia and hypothermia (n=72). A total of six time points of ischemia (2 times a day for 3 days; 12 pups for each time point) were examined. Samples were collected for analysis of body weight, morphological and histological characteristics, intestinal weight, intestinal weight/body weight ratio, injury grade, and intestinal fatty acid-binding protein levels. RESULTS: Body and intestinal weights were lower in the Necrotizing Enterocolitis group than in the Control group (

    Prophylactic application of laser light restores L-FABP expression in the livers of rats submitted to partial ischemia

    Get PDF
    OBJECTIVES: The objective of the present study was to evaluate the protective effect of pre-conditioning treatment with laser light on hepatic injury in rats submitted to partial ischemia using mitochondrial function and liver fatty acid binding protein as markers. METHODS: Rats were divided into four groups (n=5): 1) Control, 2) Control + Laser, 3) Partial Ischemia and 4) Partial Ischemia + Laser. Ischemia was induced by clamping the hepatic pedicle of the left and middle lobes of the liver for 60 minutes. Laser light at 660 nm was applied to the liver immediately prior to the induction of ischemia at 22.5 J/cm2 , with 30 seconds of illumination at five individual points. The animals were sacrificed after 30 minutes of reperfusion. Blood and liver tissues were collected for analysis of mitochondrial function, determination of malondialdehyde and analysis of fatty acid binding protein expression by Western blot. RESULTS: Mitochondrial function decreased in the Partial Ischemia group, especially during adenosine diphosphate-activated respiration (state 3), and the expression of fatty acid binding protein was also reduced. The application of laser light prevented bioenergetic changes and restored the expression of fatty acid binding protein. CONCLUSION: Prophylactic application of laser light to the livers of rats submitted to partial ischemia was found to have a protective effect in the liver, with normalization of both mitochondrial function and fatty acid binding protein tissue expression

    Effect of nitrofen in the final stages of development of the diaphragm muscle in rats

    Full text link
    PURPOSE: To evaluate the expression of myosin in muscle fibers of the diaphragm in experimental congenital diaphragmatic hernia (CDH). METHODS: Fetuses of pregnant rats were divided into four groups: External Control (EC), composed of non-manipulated rats; Nitrofen, composed of pregnant rats that received 100 mg of nitrofen (2,4-dichloro-4'nitrodiphenyl ether) diluted in olive oil on gestational day (GD) 9.5, whose fetuses developed CDH (N+) or not (N-), and Olive Oil Placebo (OO), composed of pregnant rats that received the oil on the same GD. The fetuses were collected on GD 18.5, 19.5, 20.5 and 21.5 (term = 22 days). We obtained body weight (BW) and photographed the diaphragm area (DA), hernia area (HA) and subsequent calculated the HA/DA ratio in N+ group. Samples of Diaphragm muscle were processed for histological staining with H/E and immunohistochemistry (IHQ) for myosin.} RESULTS: The fetuses of N- and N+ groups had decreased BW and DA compared to EC and OO groups (p <0.001). HA was decreased on GD 18.5 compared to 21.5 (p <0.001) and the HA/DA ratio showed no difference. IHQ showed decreased expression of myosin in nitrofen groups. CONCLUSION: CDH induced by nitrofen model contributes to the understanding of muscularization in the formation of the diaphragm where the myosin expression is decreased

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF
    corecore