95 research outputs found

    Diversity and Ranking of ENSO Impacts along the Eastern Seaboard of Subtropical Southern Africa

    Get PDF
    El Ninoā€“Southern Oscillation (ENSO) is the dominant mode of interannual climate variability over southern Africa during the summer half of the year. It is widely accepted that El Nino (La Nina) core summers (Decemberā€“February) are typically warmer and drier (cooler and wetter) than average over the region. Although it is recognized that the ENSO impacts are nonlinear and not all events result in the expected impact, little or no work has been carried out to systematically explore the diversity and ranking of these impacts. Here, parameter-space bubble plots involving various rainfall and temperature metrics are used to study how such impacts vary over the eastern seaboard of subtropical southern Africa to determine the ENSO events with the strongest impacts, and to identify the most anomalous ENSO cases. Comparison of neutral summers experiencing the strongest droughts/floods with ENSO impacts is also performed. These metrics are designed to be applicable to the interests of farmers and other user groups. It is found that 1987/1988 (2017/2018) was the most unusual El Nino (La Nina) and neutral 1981/1982 had a severe drought, worse than occurs during most El Ninos. These unusual cases are explained in terms of regional circulation and SST anomalies. Implications of the results for seasonal forecasting and for farmers are discussed

    Return period of extreme rainfall at George, South Africa

    Get PDF
    The torrential rains of August 2006 in the southern Cape of South Africa were the most intense observed in the region. Here we use the longest-available daily rainfall series at George (from 1941 to 2006), in the vicinity of which the most destructive floods were observed, together with an extreme value model to estimate the return period of such an extreme event. According to this model, the greatest annual maximum daily rainfall of 230 mm, observed at the town on 1 August 2006, has a return period of 1222 years, whereas the second-largest observed annual maximum daily rainfall (132 mm in September 1964) has a return period of 23 years. This shows that the August 2006 extreme rainfall at George can be considered as a particularly rare event

    Representation of the Mozambique channel trough and its link to southern African rainfall in CMIP6 models

    Get PDF
    The topography of Madagascar and the strength of the Mozambique Channel Trough (MCT) modulate summer rainfall over southern Africa. A strong MCT hinders the penetration of moisture bearing easterlies from the South Indian Ocean into the mainland, thus reducing rainfall there and vice versa for weak MCT summers. Given the link between the MCT and rainfall, it is important to analyse how climate models represent the trough. Here, output from 20 models within the CMIP6 ensemble of Coupled General Circulation Models (CGCMs) are analyzed to investigate how state-of-the-art CGCMs represent the MCT and its link to southern African rainfall. Overall, the ensemble mean insignificantly underestimates the observed MCT. There is a large spread among the models, with the strength of the MCT significantly correlated with the Froude number based on the mountain height over Madagascar. In models, the vorticity tendency in the MCT area is dominated by the stretching and friction terms, whereas the vertical advection, tilting and residual terms dominate in the ERA5 reanalysis. The link between MCT and rainfall in the southern African subcontinent is missing in the models. Large rainfall biases are depicted over mainland even in models with a very strong MCT. It is found that the impacts of the MCT in the models could be masked by a complex mix of processes such as the strength of the Angola low, moisture fluxes from the Indian and South Atlantic Oceans as well as overestimated convection in the Mozambique Channel area.Representation of the Mozambique channel trough and its link to southern African rainfall in CMIP6 modelspublishedVersio

    Multidecadal Wind Variability Drives Temperature Shifts on the Agulhas Bank

    Get PDF
    Key Points: ā€¢ A regional ocean model is used to examine multidecadal shelf temperature changes on the Agulhas Bank ā€¢ There are distinct shelf temperature regime changes in 1966 and 1996 ā€¢ These regime shifts are caused by changes in coastal upwelling linked to large-scale wind variability The Agulhas Bank is an important area for the spawning of small pelagic fish and other species. Here, within a NEMO ocean model, we investigate changes in temperature over the Bank on multidecadal time scales. In agreement with previous observational studies, a shift to colder temperatures is found in 1997. The model also simulates an earlier shift from colder to warmer temperatures in 1966. These shifts are coastally confined and shown, using a climatologically forced model run as a control, to be driven by a northā€south migration in the largeā€scale wind belts, rather than by changes in downward heat fluxes or changes in the Agulhas Current itself. The zonal wind changes on the Agulhas Bank show a significant relationship with the Southern Annular Mode, showing some promise for future predictability of cold and warm regimes on the Agulhas Bank. Thus, while the Agulhas Current has been shown in previous work to have a large impact on intraā€annual and interannual temperature variability, this work shows that multidecadal variability in temperature on the shelf is likely to be wind forced

    Variability in the South Atlantic Anticyclone and the Atlantic NiƱo mode

    Get PDF
    Sea surface temperature (SST) anomalies in the eastern equatorial Atlantic are connected to modulations in the strength of the South Atlantic subtropical high-pressure system, referred to as the South Atlantic Anticyclone (SAA). Using ocean and atmosphere reanalysis products we show here that the strength of the SAA from February to May impacts the timing of the cold tongue onset and the intensity of its development in the eastern equatorial Atlantic (EEA) via anomalous tropical wind power. This modulation of the timing and amplitude of the seasonal cold tongue development manifests as anomalous SST events peaking between June and August. The timing and impact of this connection is not completely symmetric for warm and cold events. For cold events, an anomalously strong SAA in February and March leads to positive wind power anomalies from February to June resulting in an early cold tongue onset and subsequent cold SST anomalies in June and July. For warm events the anomalously weak SAA persists until May, generating negative wind power anomalies that lead to a late cold tongue onset as well as a suppression of the cold tongue development and associated warm SST anomalies. Mechanisms by which SAA induced wind power variations south of the equator influence EEA SST are discussed, including ocean adjustment via Rossby and Kelvin wave propagation, meridional advection, and local intraseasonal wind variation

    Atmospheric and climatic drivers of tide gauge sea level variability along the east and south coast of South Africa

    Get PDF
    Atmospheric forcing and climate modes of variability on various timescales are important drivers of sea level variability. However, the influence of such drivers on sea level variability along the South African east and south coast has not yet been adequately investigated. Here, we determine the timescales of sea level variability and their relationships with various drivers. Empirical Mode Decomposition (EMD) was applied to seven tide gauge records and potential forcing data for this purpose. The oscillatory modes identified by the EMD were summed to obtain physically more meaningful timescalesā€”specifically, the sub-annual (less than 18 months) and interannual (greater than two years) scales. On the sub-annual scale, sea level responds to regional zonal and meridional winds associated with mesoscale and synoptic weather disturbances. Ekman dynamics resulting from variability in sea level pressure and alongshore winds are important for the coastal sea level on this timescale. On interannual timescales, there were connections with ENSO, the Indian Ocean Dipole (IOD) and the Southern Annular Mode (SAM), although the results are not consistent across all the tide gauge stations and are not particularly strong. In general, El NiƱo and positive IOD events are coincident with high coastal sea levels and vice versa, whereas there appears to be an inverse relationship between SAM phase and sea level.publishedVersio

    Interannual memory effects for spring NDVI in semi-arid South Africa

    Get PDF
    Almost 20 years of Normalized Difference Vegetative Index (NDVI) and precipitation (PPT) data are analysed to better understand the interannual memory effects on vegetation dynamics observed at regional scales in Southern Africa (SA). The study focuses on a semi-arid region (25Ā°Sā€“31Ā°S; 21Ā°Eā€“26Ā°E) during the austral early summer (Septemberā€“December). The memory effects are examined using simple statistical approaches (linear correlations and regressions) which require the definition of an early summer vegetation predictand (December NDVI minus September NDVI) and a consistent set of potential predictors (rainfall amount, number of rainy days, rainfall intensity, NDVI and Rain-Use-Efficiency) considered with 4 to 15-month time-lag. An analysis over six SA sub-regions, corresponding to the six major land-cover types of the area reveals two distinct memory effects. A ā€œnegativeā€ memory effect (with both rainfall and vegetation) is detected at 7 to 10-month time-lag while a ā€œpositiveā€ memory effect (with vegetation only) is observed at 12 to 14-month time-lag. These results suggest that interannual memory effects in early summer vegetation dynamics of semi-arid South Africa may preferably be driven by biological rather than hydrological mechanisms

    A quasi-geostrophic analysis of summertime southern African linear-regime westerly waves

    Get PDF
    Linear-regime westerly waves that propagate across the South African domain are often linked to well-known rainfall producing systems such as tropical temperate troughs and synoptic scale tropical low-pressure systems, and ridging South Atlantic Ocean anticyclones at the surface. It is accepted that the baroclinic waves that propagate across the domain provide the lifting mechanism that causes the required vertical motion for rainfall to occur. This study shows that there exists a jet streak embedded in these waves that is located downstream of the trough axis, to the east of which vertically upward motion is expected to occur. The entrance of the jet streak passes just south of the country, as the waves propagate past the domain. The study further shows that for this class of waves, the vertical motion that causes rainfall to occur is induced by the thermally direct transverse ageostrophic circulation that is located at this jet entrance. This is instead of the conventional upper air divergence that is located at the infection point east of the trough axis. Using a method of decomposing the Q-vector into its transverse (Qn) and shear (Qs) components, the divergence felds of which are used to decompose the vertical motion into the corresponding components, i.e ķœ”n and ķœ”s, respectively; it was shown that the vertical motion over South Africa is explained more by the former than the latter. Therefore, the uplift over the country and that located at the infection point east of the trough are dynamically distinct processes. Taking the limitations of the quasi-geostrophic framework into consideration, the study concludes that during the passage of linear-regime waves vertical motion that might lead to rainfall is caused by the circulation at the jet entrance and not the divergence in the baroclinic wav

    Agulhas Current Meanders Facilitate Shelf-Slope Exchange on the Eastern Agulhas Bank

    Get PDF
    Large solitary meanders are arguably the dominant mode of variability in the Agulhas Current. Observational studies have shown that these large meanders are associated with strong upwelling velocities and affect the shelf circulation for over 100 days per year. Here 10-year time series from two ocean general circulation models are used to create a composite picture of the Agulhas Current and its interactions with the shelf circulation in meandering and nonmeandering modes. Both models show good agreement with the size, propagation speed, and frequency of observed meanders. These composite meanders are then used to examine the response of shelf waters to the onset of large meanders, with the use of model output enabling the dynamics at depth to be explored. Results show a composite mean warming of up to 3Ā°C of depth-averaged temperature along the shelf edge associated with an intrusion of the current jet onto the shelf driven by an intensification of the flow along the leading edge of large meanders. However, this intensification of flow results in cooling of bottom waters, driving cold events at the shelf break of <10Ā°C at 100 m. Thus, the intensification of the current jet associated with large meander events appears to drive strong up and downwelling events across the inshore front of the Agulhas Current, facilitating shelf-slope exchange
    • ā€¦
    corecore