945 research outputs found

    Molecular identification of Sarcocystis wobeseri-like parasites in a new intermediate host species, the white-tailed sea eagle (Haliaeetus albicilla)

    Get PDF
    A reintroduced white-tailed sea eagle (Haliaeetus albicilla) in moderate body condition was found dead and submitted for post-mortem examination. There were no signs of disease on gross pathological examination. Histopathological examination however revealed the presence of encysted protozoan parasites in pectoral and cardiac muscle sections. Polymerase chain reaction amplification of extracted genomic DNA and sequencing of four regions: the 18S rDNA, 28S rDNA, internal transcribed spacer (ITS) 1, and RNA polymerase B (rpoB) loci, confirmed the presence of a Sarcocystis species in pectoral and cardiac muscle which appeared phylogenetically similar to Sarcocystis wobeseri. This is the first report of S. wobeseri-like infection in a white-tailed sea eagle revealing a new intermediate host species for this parasite

    Field theories of paramagnetic Mott insulators

    Full text link
    This is a summary of a central argument in recent review articles by the author (cond-mat/0109419, cond-mat/0211005, and cond-mat/0211027). An effective field theory is derived for the low energy spin singlet excitations in a paramagnetic Mott insulator with collinear spin correlations.Comment: 12 pages, 4 figures, Proceedings of the International Conference on Theoretical Physics, Paris, UNESCO, July 200

    Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid

    Full text link
    The Landau paradigm of classifying phases by broken symmetries was demonstrated to be incomplete when it was realized that different quantum Hall states could only be distinguished by more subtle, topological properties. Today, the role of topology as an underlying description of order has branched out to include topological band insulators, and certain featureless gapped Mott insulators with a topological degeneracy in the groundstate wavefunction. Despite intense focus, very few candidates for these topologically ordered "spin liquids" exist. The main difficulty in finding systems that harbour spin liquid states is the very fact that they violate the Landau paradigm, making conventional order parameters non-existent. Here, we uncover a spin liquid phase in a Bose-Hubbard model on the kagome lattice, and measure its topological order directly via the topological entanglement entropy. This is the first smoking-gun demonstration of a non-trivial spin liquid, identified through its entanglement entropy as a gapped groundstate with emergent Z2 gauge symmetry.Comment: 4+ pages, 3 figure

    Evidence for quark-matter cores in massive neutron stars

    Get PDF
    The theory governing the strong nuclear force-quantum chromodynamics-predicts that at sufficiently high energy densities, hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons(1). Although this has been observed in ultrarelativistic heavy-ion collisions(2,3), it is currently an open question whether quark matter exists inside neutron stars(4). By combining astrophysical observations and theoretical ab initio calculations in a model-independent way, we find that the inferred properties of matter in the cores of neutron stars with mass corresponding to 1.4 solar masses (M-circle dot) are compatible with nuclear model calculations. However, the matter in the interior of maximally massive stable neutron stars exhibits characteristics of the deconfined phase, which we interpret as evidence for the presence of quark-matter cores. For the heaviest reliably observed neutron stars(5,6) with mass M approximate to 2M(circle dot), the presence of quark matter is found to be linked to the behaviour of the speed of sound c(s) in strongly interacting matter. If the conformal bound cs2Peer reviewe

    Quantum magnetism and criticality

    Get PDF
    Magnetic insulators have proved to be fertile ground for studying new types of quantum many body states, and I survey recent experimental and theoretical examples. The insights and methods transfer also to novel superconducting and metallic states. Of particular interest are critical quantum states, sometimes found at quantum phase transitions, which have gapless excitations with no particle- or wave-like interpretation, and control a significant portion of the finite temperature phase diagram. Remarkably, their theory is connected to holographic descriptions of Hawking radiation from black holes.Comment: 39 pages, 10 figures, review article for non-specialists; (v2) added clarifications and references; (v3) minor corrections; (v4) added footnote on hydrodynamic long-time tail

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page

    Prognostic Factors for Distress After Genetic Testing for Hereditary Cancer

    Get PDF
    The psychological impact of an unfavorable genetic test result for counselees at risk for hereditary cancer seems to be limited: only 10-20 % of counselees have psychological problems after testing positive for a known familial mutation. The objective of this study was to find prognostic factors that can predict which counselees are most likely to develop psychological problems after presymptomatic genetic testing. Counselees with a 50 % risk of BRCA1/2 or Lynch syndrome completed questionnaires at three time-points: after receiving a written invitation for a genetic counseling intake (T1), 2-3 days after receiving their DNA test result (T2), and 4-6 weeks later (T3). The psychological impact of the genetic test result was examined shortly and 4-6 weeks after learning their test result. Subsequently, the influence of various potentially prognostic factors on psychological impact were examined in the whole group. Data from 165 counselees were analyzed. Counselees with an unfavorable outcome did not have more emotional distress, but showed significantly more cancer worries 4-6 weeks after learning their test result. Prognostic factors for cancer worries after genetic testing were pre-existing cancer worries, being single, a high risk perception of getting cancer, and an unfavorable test result. Emotional distress was best predicted by pre-existing cancer worries and pre-existing emotional distress. The psychological impact of an unfavorable genetic test result appears considerable if it is measured as "worries about cancer." Genetic counselors should provide additional guidance to counselees with many cancer worries, emotional distress, a high risk perception or a weak social network

    Modelling Conditions and Health Care Processes in Electronic Health Records : An Application to Severe Mental Illness with the Clinical Practice Research Datalink

    Get PDF
    BACKGROUND: The use of Electronic Health Records databases for medical research has become mainstream. In the UK, increasing use of Primary Care Databases is largely driven by almost complete computerisation and uniform standards within the National Health Service. Electronic Health Records research often begins with the development of a list of clinical codes with which to identify cases with a specific condition. We present a methodology and accompanying Stata and R commands (pcdsearch/Rpcdsearch) to help researchers in this task. We present severe mental illness as an example. METHODS: We used the Clinical Practice Research Datalink, a UK Primary Care Database in which clinical information is largely organised using Read codes, a hierarchical clinical coding system. Pcdsearch is used to identify potentially relevant clinical codes and/or product codes from word-stubs and code-stubs suggested by clinicians. The returned code-lists are reviewed and codes relevant to the condition of interest are selected. The final code-list is then used to identify patients. RESULTS: We identified 270 Read codes linked to SMI and used them to identify cases in the database. We observed that our approach identified cases that would have been missed with a simpler approach using SMI registers defined within the UK Quality and Outcomes Framework. CONCLUSION: We described a framework for researchers of Electronic Health Records databases, for identifying patients with a particular condition or matching certain clinical criteria. The method is invariant to coding system or database and can be used with SNOMED CT, ICD or other medical classification code-lists
    • …
    corecore