40 research outputs found

    Investigating the Relationship between the Structure of Educational Program and Research Outputs in Top Iranian and international Architectural Schools

    Get PDF
    Academic educational programs such as architectural programs are all influenced by the quality of education and Premier academic staff. They also consist of theoretical, practical and experimental units. One of the criteria for evaluating such international educational programs is the rate of their research outputs in an international ranking called QS. The lack of knowledge about the relationship between the structure of educational programs and the rate of their research outputs in an international scale causes the inconsistency between educational programs and research outputs. This matter consequently leads to a lower international ranking of universities. Thus, the current article aimed at addressing this issue for the first time. To collect data, the thirteen and three top international and Iranian architectural faculties with higher impact factors in the global rankings were selected. Then, the meaningful relationship between the research outputs and their educational systems upstream and downstream levels, including the relationship between the quality of education, educational programs, faculty members and allotted hours to theoretical, practical and experimental units and the research outputs were investigated. The results revealed that there is no relationship between having top academic staff and allotted hours to theoretical, practical and experimental units and the research outputs in all top international faculties. In addition, the results showed that there is no relationship between the hours allotted to research units and the research outputs of top three Iranian architectural faculties

    Dabco containing acidic poly(ionic liquid): An efficient catalyst for the one-pot Preparation of 2,3-dihydroquinazoline-4(1H)-ones

    Get PDF
    1,4-Diazabicyclo[2.2.2]octane (DABCO) containing acidic poly(ionic liquid) (DAIL) has been prepared via condensation of 1,4-dichloro butane and DABCO, as an efficient acidic catalyst and has been applied in the one-pot preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives. This catalyst has been characterized by FT-IR and TGA. According to the obtained results including time, yield and recyclability, DAIL could be considered as an efficient catalyst for organic transformations

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change+/-100) revealed a mean reduction of smell (-79.7+/- 28.7, mean+/- SD), taste (-69.0+/- 32.6), and chemesthetic (-37.3+/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.Additional co-authors: Veronica Pereda-Loth, Shannon B Olsson, Richard C Gerkin, Paloma Rohlfs Domínguez, Javier Albayay, Michael C. Farruggia, Surabhi Bhutani, Alexander W Fjaeldstad, Ritesh Kumar, Anna Menini, Moustafa Bensafi, Mari Sandell, Iordanis Konstantinidis, Antonella Di Pizio, Federica Genovese, Lina Öztürk, Thierry Thomas-Danguin, Johannes Frasnelli, Sanne Boesveldt, Özlem Saatci, Luis R. Saraiva, Cailu Lin, Jérôme Golebiowski, Liang-Dar Hwang, Mehmet Hakan Ozdener, Maria Dolors Guàrdia, Christophe Laudamiel, Marina Ritchie, Jan Havlícek, Denis Pierron, Eugeni Roura, Marta Navarro, Alissa A. Nolden, Juyun Lim, KL Whitcroft, Lauren R. Colquitt, Camille Ferdenzi, Evelyn V. Brindha, Aytug Altundag, Alberto Macchi, Alexia Nunez-Parra, Zara M. Patel, Sébastien Fiorucci, Carl M. Philpott, Barry C. Smith, Johan N Lundström, Carla Mucignat, Jane K. Parker, Mirjam van den Brink, Michael Schmuker, Florian Ph.S Fischmeister, Thomas Heinbockel, Vonnie D.C. Shields, Farhoud Faraji, Enrique Enrique Santamaría, William E.A. Fredborg, Gabriella Morini, Jonas K. Olofsson, Maryam Jalessi, Noam Karni, Anna D'Errico, Rafieh Alizadeh, Robert Pellegrino, Pablo Meyer, Caroline Huart, Ben Chen, Graciela M. Soler, Mohammed K. Alwashahi, Olagunju Abdulrahman, Antje Welge-Lüssen, Pamela Dalton, Jessica Freiherr, Carol H. Yan, Jasper H. B. de Groot, Vera V. Voznessenskaya, Hadar Klein, Jingguo Chen, Masako Okamoto, Elizabeth A. Sell, Preet Bano Singh, Julie Walsh-Messinger, Nicholas S. Archer, Sachiko Koyama, Vincent Deary, Hüseyin Yanik, Samet Albayrak, Lenka Martinec Novákov, Ilja Croijmans, Patricia Portillo Mazal, Shima T. Moein, Eitan Margulis, Coralie Mignot, Sajidxa Mariño, Dejan Georgiev, Pavan K. Kaushik, Bettina Malnic, Hong Wang, Shima Seyed-Allaei, Nur Yoluk, Sara Razzaghi, Jeb M. Justice, Diego Restrepo, Julien W Hsieh, Danielle R. Reed, Thomas Hummel, Steven D Munger, John E Haye

    Inhibition of Alzheimer's BACE-1 by 2,6-dialkyl-4-chromon-3-yl-1,4-dihydropyridine-3,5-dicarboxylates

    No full text
    Alzheimer’s disease is the most common cause of dementia in the elderly, and no disease-modifying therapy is yet available for this devastating pathology. Deposition of different physicochemical forms of amyloid-β peptides is a critical phase in the pathogenesis of Alzheimer’s disease. β-Site amyloid precursor protein cleaving enzyme 1 (BACE-1) is a major enzyme responsible for amyloid-β production; therefore, inhibition of this enzyme represents a promising approach for the discovery of amyloid-β-lowering agents. In this study, a series of novel 2,6-dialkyl-4-chromon-3-yl-1,4-dihydropyridine-3,5-dicarboxylates (14–23) were synthesized and assessed as BACE-1 inhibitors using the Förster resonance energy transfer-based enzyme assay. Synthesized dihydropyridines exhibited weak-to-relatively-good BACE-1 inhibitory activities. Enzyme inhibitory activities ranged from 6.84 ± 6.62 (23) to 51.32 ± 1.04 (14) percent enzyme inhibitions at the concentration of 10 μM. The structure–activity relationship study showed that the presence of 4-[7-(ethanoyloxy)-4-oxo-4H-chromen-3-yl] moiety at C4 position of dihydropyridine ring (14, 16 and 18) confers higher activity compared with other substitutions at this position. Docking simulation predicted a key H-bond interaction between Asp32 residue and dihydropyridine NH group. Moreover, all docked dihydropyridines made good hydrophobic contacts with S1 and S2 subpockets of BACE-1. A good correlation between estimated binding affinities (pKi) and experimental BACE-1 inhibitory activities at 10 μM was obtained (R 2 = 0.639). The findings of this study suggested that 2,6-dialkyl-4-chromon-3-yl-1,4-dihydropyridine-3,5-dicarboxylates could be promising scaffolds for the discovery of novel BACE-1 inhibitors for management of Alzheimer’s disease
    corecore