65 research outputs found

    Brillouin frequency shift of standard optical fibers set in water vapor medium

    Get PDF
    The dependence of the Brillouin frequency shift (BFS) on UV-cured acrylate coating and uncoated fibers for media that have different water vapor concentrations is experimentally investigated. The BFS is proportional to the temperature within the fiber, but it also depends on the water vapor contained in the surroundings of the fiber. A hypothesis based on the efficiency of the heat transfer due to the different humidity concentration in the media is proposed, and the temperature difference that depends on the heat transfer is quantified in standard fibers. A shift of ∼0.22 MHz for relative humidity change between 60% and 98% at 20°C is measure

    Photonic skins for optical sensing:highlights of the PHOSFOS project

    Get PDF
    PHOSFOS (Photonic Skins For Optical Sensing) is a research project funded by the European Commission's 7th Framework Programme. The project aims at developing a flexible and stretchable foil that integrates highly advanced optical fibre sensing elements as well as optical and electrical powering functionalities and read-out of the sensors. This skin-like foil can be wrapped around or attached to irregularly shaped objects or bodies and will allow quasi-distributed sensing of mechanical quantities such as deformation and pressure. The applications targeted can be found in the fields of structural health monitoring and healthcare

    Exploitation and destabilization of a warm, freshwater ecosystem through engineered hydrological change

    Get PDF
    Exploitation of freshwater resources is having catastrophic effects on the ecological dynamics, stability, and quality of those water resources on a global scale, especially in arid and semiarid regions. Lake Kinneret, Israel (the Biblical Sea of Galilee), the only major natural freshwater lake in the Middle East, has been transformed functionally into a reservoir over the course of ∼70 years of hydrological alterations aimed mostly at producing electrical power and increasing domestic and agricultural water supply. Historical changes in lake chemistry and biology were reconstructed using analysis of sedimentary nutrient content, stable and radioisotope composition, biochemical and morphological fossils from algae, remains of aquatic invertebrates, and chemical indices of past light regimes. Together, these paleolimnological analyses of the lake's bottom sediments revealed that this transformation has been accompanied by acceleration in the rate of eutrophication, as indicated by increased accumulation rates of phosphorus, nitrogen, organic matter, phytoplankton and bacterial pigments, and remains of phytoplankton and zooplankton. Substantial increases in these indices of eutrophication coincide with periods of increased water‐level fluctuations and drainage of a major upstream wetland in the early to middle 20th century and suggest that management of the lake for increased water supply has degraded water quality to the point that ecosystem stability and sustainability are threatened. Such destabilization may be a model for eutrophication of freshwater lakes in other arid regions of the world in which management emphasizes water quantity over quality.Peer reviewedZoolog
    corecore