149 research outputs found

    8-Chloroadenosine induces apoptosis in human coronary artery endothelial cells through the activation of the unfolded protein response

    Get PDF
    © 2019 The Authors Infiltration of leukocytes within the vessel at sites of inflammation and the subsequent generation of myeloperoxidase-derived oxidants, including hypochlorous acid, are key characteristics of atherosclerosis. Hypochlorous acid is a potent oxidant that reacts readily with most biological molecules, including DNA and RNA. This results in nucleic acid modification and the formation of different chlorinated products. These products have been used as biomarkers of inflammation, owing to their presence in elevated amounts in different inflammatory fluids and diseased tissue, including atherosclerotic lesions. However, it is not clear whether these materials are simply biomarkers, or could also play a role in the development of chronic inflammatory pathologies. In this study, we examined the reactivity of different chlorinated nucleosides with human coronary artery endothelial cells (HCAEC). Evidence was obtained for the incorporation of each chlorinated nucleoside into the cellular RNA or DNA. However, only 8-chloro-adenosine (8ClA) had a significant effect on the cell viability and metabolic activity. Exposure of HCAEC to 8ClA decreased glycolysis, and resulted in a reduction in ATP, with a corresponding increase in the chlorinated analogue, 8Cl-ATP in the nucleotide pool. 8ClA also induced sustained endoplasmic reticulum stress within the HCAEC, which resulted in activation of the unfolded protein response, the altered expression of antioxidant genes and culminated in the release of calcium into the cytosol and cell death by apoptosis. Taken together, these data provide new insight into pathways by which myeloperoxidase activity and resultant hypochlorous acid generation could promote endothelial cell damage during chronic inflammation, which could be relevant to the progression of atherosclerosis

    Assessing the efficacy of dietary selenomethionine supplementation in the setting of cardiac ischemia/reperfusion injury

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. article distributed under the terms and conditions of the Cr. Oxidative stress is a major hallmark of cardiac ischemia/reperfusion (I/R) injury. This partly arises from the presence of activated phagocytes releasing myeloperoxidase (MPO) and its production of hypochlorous acid (HOCl). The dietary supplement selenomethionine (SeMet) has been shown to bolster endogenous antioxidant processes as well as readily react with MPO-derived oxidants. The aim of this study was to assess whether supplementation with SeMet could modulate the extent of cellular damage observed in an in vitro cardiac myocyte model exposed to (patho)-physiological levels of HOCl and an in vivo rat model of cardiac I/R injury. Exposure of the H9c2 cardiac myoblast cell line to HOCl resulted in a dose-dependent increase in necrotic cell death, which could be prevented by SeMet supplementation and was attributed to SeMet preventing the HOCl-induced loss of mitochondrial inner trans-membrane potential, and the associated cytosolic calcium accumulation. This protection was credited primarily to the direct oxidant scavenging ability of SeMet, with a minor contribution arising from the ability of SeMet to bolster cardiac myoblast glutathione peroxidase (GPx) activity. In vivo, a significant increase in selenium levels in the plasma and heart tissue were seen in male Wistar rats fed a diet supplemented with 2 mg kg−1 SeMet compared to controls. However, SeMet-supplementation demonstrated only limited improvement in heart function and did not result in better heart remodelling following I/R injury. These data indicate that SeMet supplementation is of potential benefit within pathological settings where excessive HOCl is known to be generated but has limited efficacy as a therapeutic agent for the treatment of heart attack

    A pivotal role for NF-κB in the macrophage inflammatory response to the myeloperoxidase oxidant hypothiocyanous acid

    Full text link
    © 2018 Elsevier Inc. Atherosclerosis is characterised by the infiltration of macrophages at sites of inflammation within the vessel wall and the release of myeloperoxidase (MPO), which forms hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). HOCl is a damaging oxidant implicated in the development of atherosclerosis. Preferential formation of HOSCN occurs under conditions where thiocyanate ions are elevated, as is the case in smokers. HOSCN reacts selectively with thiols, which can result in more enzyme inactivation and damage than HOCl at susceptible sites, which may contribute to atherosclerosis in smokers. In this study, we show that exposure of macrophages to HOSCN results in a time- and dose-dependent increase in the mRNA expression and release of pro-inflammatory cytokines and chemokines, including monocyte chemotactic protein 1, tumour necrosis factor alpha, and interleukins 6, 8 and 1β. At high oxidant concentrations (>200 μM), a significant loss of cellular thiols and increased cell death is observed. HOSCN-induced cytokine/chemokine expression and cell death were decreased on pharmacological inhibition of nuclear factor kappa B. These data highlight a pathway by which HOSCN could promote inflammation and the development of atherosclerosis, in the presence of supra-physiological levels of the precursor thiocyanate, which are achievable by cigarette smoking

    Enhanced warming over the global subtropical western boundary currents

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Climate Change 2 (2012): 161-166, doi:10.1038/nclimate1353.Subtropical western boundary currents are warm, fast flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake. The possibility that these highly energetic and nonlinear currents might change under greenhouse gas forcing has raised significant concerns, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and newly developed century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce ocean's ability to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.This work is supported by China National Key Basic Research Project (2007CB411800) and National Natural Science Foundation Projects (40788002, 40921004). WC is supported by the Australian Climate Change Science program and the Southeast Australia Climate Initiative. HN is supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology through Grant-in-Aid for Scientific Research on Innovative Areas #2205 and by the Japanese Ministry of Environment through Global Environment Research Fund (S-5). MJM is supported by NOAA’s Climate Program Office.2012-07-2

    Reading between Eye Saccades

    Get PDF
    Background: Skilled adult readers, in contrast to beginners, show no or little increase in reading latencies as a function of the number of letters in words up to seven letters. The information extraction strategy underlying such efficiency in word identification is still largely unknown, and methods that allow tracking of the letter information extraction through time between eye saccades are needed to fully address this question. Methodology/Principal Findings: The present study examined the use of letter information during reading, by means of the Bubbles technique. Ten participants each read 5,000 five-letter French words sampled in space-time within a 200 ms window. On the temporal dimension, our results show that two moments are especially important during the information extraction process. On the spatial dimension, we found a bias for the upper half of words. We also show for the first time that letter positions four, one, and three are particularly important for the identification of five-letter words. Conclusions/Significance: Our findings are consistent with either a partially parallel reading strategy or an optimal serial reading strategy. We show using computer simulations that this serial reading strategy predicts an absence of a wordlength effect for words from four- to seven letters in length. We believe that the Bubbles technique will play an importan

    Reading during the composition of multi-sentence texts: an eye-movement study

    Get PDF
    Writers composing multi-sentence texts have immediate access to a visual representation of what they have written. Little is known about the detail of writers’ eye movements within this text during production. We describe two experiments in which competent adult writers’ eye-movements were tracked while performing short expository writing tasks. These are contrasted with conditions in which participants read and evaluated researcher-provided texts. Writers spent a mean of around 13% of their time looking back into their text. Initiation of these look-back sequences was strongly predicted by linguistically important boundaries in their ongoing production (e.g., writers were much more likely to look back immediately prior to starting a new sentence). 36% of look-back sequences were associated with sustained reading and the remainder with less patterned forward and backward saccades between words ("hopping"). Fixation and gaze durations and the presence of word-length effects suggested lexical processing of fixated words in both reading and hopping sequences. Word frequency effects were not present when writers read their own text. Findings demonstrate the technical possibility and potential value of examining writers’ fixations within their just-written text. We suggest that these fixations do not serve solely, or even primarily, in monitoring for error, but play an important role in planning ongoing production

    Variability of coastal and ocean water temperature in the upper 700 m along the western Iberian Peninsula from 1975 to 2006

    Get PDF
    Temperature is observed to have different trends at coastal and ocean locations along the western Iberian Peninsula from 1975 to 2006, which corresponds to the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA). Reanalysis data are available at monthly scale with a horizontal resolution of 0.5° × 0.5° and a vertical resolution of 40 levels, which allows obtaining information beneath the sea surface. Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered here, since the most important changes in heat content observed for the world ocean during the last decades, correspond to the upper 700 m. Warming was observed to be considerably higher at ocean locations than at coastal ones. Ocean warming ranged from values on the order of 0.3 °C dec(-1) near surface to less than 0.1 °C dec(-1) at 500 m, while coastal warming showed values close to 0.2 °C dec(-1) near surface, decreasing rapidly below 0.1 °C dec(-1) for depths on the order of 50 m. The heat content anomaly for the upper 700 m, showed a sharp increase from coast (0.46 Wm(-2)) to ocean (1.59 Wm(-2)). The difference between coastal and ocean values was related to the presence of coastal upwelling, which partially inhibits the warming from surface of near shore water.publishe

    Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains

    Get PDF
    Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes

    Parts, Wholes, and Context in Reading: A Triple Dissociation

    Get PDF
    Research in object recognition has tried to distinguish holistic recognition from recognition by parts. One can also guess an object from its context. Words are objects, and how we recognize them is the core question of reading research. Do fast readers rely most on letter-by-letter decoding (i.e., recognition by parts), whole word shape, or sentence context? We manipulated the text to selectively knock out each source of information while sparing the others. Surprisingly, the effects of the knockouts on reading rate reveal a triple dissociation. Each reading process always contributes the same number of words per minute, regardless of whether the other processes are operating

    Diving of Great Shearwaters (Puffinus gravis) in Cold and Warm Water Regions of the South Atlantic Ocean

    Get PDF
    BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis), the largest member of this genus. This study reports the first high sampling rate (2 s) of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs) were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50%) dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C) water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C) water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving
    corecore