1,017 research outputs found

    Staying Ahead of the Digital Technological Curve Using Survey Methods

    Get PDF
    In the early twentieth century, surveys were an innovative and neoteric methodology. Collected in-person or by mail, researchers could ascertain the thoughts and opinions of a small sample, which could then be applied to the general population. Almost one hundred years later, the use of surveys has become pervasive in society due to digital technological advancement. However, while the digital evolution has not only altered the possibilities of how, when, and where surveys may be administered, the threats to this methodology has also evolved. While issues related to previously known errors (i.e. sampling error, non-response error, etc.) remain and have also evolved, new threats regarding confidentiality and privacy, design issues, and others, have emerged in response to this digital advancement. Novice and experienced researchers alike should be cognizant of the impact digital technologies have had on survey data collection to ensure high quality research findings. This paper explores the threats to survey methodology due to digital technological changes and discusses how novice researchers and students can mitigate these challenges. Au début du vingtième siècle, les sondages constituaient une méthodologie novatrice et moderne. Les chercheurs pouvaient, à partir d’un petit échantillon, cerner des idées et opinions recueillies en personne ou par courrier, pour ensuite les appliquer à la population générale. Près de 100 ans plus tard, grâce aux avancées de la technologie numérique, les sondages sont omniprésents dans la société. Or, l’évolution numérique a non seulement modifié les paramètres spatiotemporels et les techniques d’administration des sondages, mais aussi les risques liés à cette méthodologie. Alors que les problèmes liés aux erreurs déjà connues (erreurs d’échantillonnage, erreurs de non-réponse, etc.) demeurent et évoluent tout autant, de nouvelles menaces associées à la confidentialité et à la protection des renseignements personnels, aux questions de conception et à d’autres enjeux ont surgi en réaction à cette évolution technologique. Afin d’optimiser la qualité des résultats de recherche, les chercheuses débutantes et chevronnées devraient être au fait des retombées possibles des technologies numériques sur la collecte de données par sondage. Cet article porte sur les menaces à la méthodologie des sondages en raison des changements liés aux technologies numériques, et traite de stratégies permettant aux étudiantes et aux chercheuses débutantes d’éviter ces écueils

    In Hot Pursuit of the Hidden Companion of Eta Carinae: An X-ray Determination of the Wind Parameters

    Get PDF
    We present X-ray spectral fits to a recently obtained Chandra grating spectrum of Eta Carinae, one of the most massive and powerful stars in the Galaxy and which is strongly suspected to be a colliding wind binary system. Hydrodynamic models of colliding winds are used to generate synthetic X-ray spectra for a range of mass-loss rates and wind velocities. They are then fitted against newly acquired Chandra grating data. We find that due to the low velocity of the primary wind (~500 km/s), most of the observed X-ray emission appears to arise from the shocked wind of the companion star. We use the duration of the lightcurve minimum to fix the wind momentum ratio at 0.2. We are then able to obtain a good fit to the data by varying the mass-loss rate of the companion and the terminal velocity of its wind. We find that Mdot ~ 1e-5 Msol/yr and v ~ 3000 km/s. With observationally determined values of ~500-700 km/s for the velocity of the primary wind, our fit implies a primary mass-loss rate of Mdot ~ 2.5e-4 Msol/yr. This value is smaller than commonly inferred, although we note that a lower mass-loss rate can reduce some of the problems noted by Hillier et al. (2001) when a value as high as 1e-3 Msol/yr is used. The wind parameters of the companion are indicative of a massive star which may or may not be evolved. The line strengths appear to show slightly sub-solar abundances, although this needs further confirmation. Based on the over-estimation of the X-ray line strengths in our model, and re-interpretation of the HST/FOS results, it appears that the homunculus nebula was produced by the primary star.Comment: 12 pages, 7 figures, accepted by A&

    Linking Geometric Mass Hierarchy with Threefold Family Replication

    Get PDF
    A link is established between the observed (approximate) geometric mass hierarchy of quarks and leptons and the triangular structure of their tenable flavor representations. This singles out SU(3) as the horizontal flavor group, thereby linking the Fermi mass hierarchy with the threefold family replication. These linkages are exploited within a flavor-chiral SU(3) model, with fermions and Higgs bosons in the 3+6* representation. The model is Left-Right symmetric and utilizes the universal see-saw mechanism with a geometric mass suppression pattern. Given certain assumptions, the model produces successful mass-ratio (rather than square-mass-ratio) mixing angle relations and fixes the light quark mass ratio.Comment: Revtex, 11 twocolumn pages, No figure

    Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo

    Get PDF
    Apoptosis of cells and their subsequent removal via efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. Here, we developed a genetically encoded fluorescent reporter, CharON, that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. To confront high rate of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment, with some efferocytic macrophages carrying high corpse burden. However, overburdened macrophages were compromised in clearing wound debris, revealing an inherent vulnerability. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    Using Operational Analysis to Improve Access to Pulmonary Function Testing

    Get PDF
    Background. Timely pulmonary function testing is crucial to improving diagnosis and treatment of pulmonary diseases. Perceptions of poor access at an academic pulmonary function laboratory prompted analysis of system demand and capacity to identify factors contributing to poor access. Methods. Surveys and interviews identified stakeholder perspectives on operational processes and access challenges. Retrospective data on testing demand and resource capacity was analyzed to understand utilization of testing resources. Results. Qualitative analysis demonstrated that stakeholder groups had discrepant views on access and capacity in the laboratory. Mean daily resource utilization was 0.64 (SD 0.15), with monthly average utilization consistently less than 0.75. Reserved testing slots for subspecialty clinics were poorly utilized, leaving many testing slots unfilled. When subspecialty demand exceeded number of reserved slots, there was sufficient capacity in the pulmonary function schedule to accommodate added demand. Findings were shared with stakeholders and influenced scheduling process improvements. Conclusion. This study highlights the importance of operational data to identify causes of poor access, guide system decision-making, and determine effects of improvement initiatives in a variety of healthcare settings. Importantly, simple operational analysis can help to improve efficiency of health systems with little or no added financial investment

    Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury

    Get PDF
    Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    XMM-Newton X-ray study of early type stars in the Carina OB1 association

    Get PDF
    <p><b>Aims:</b> X-ray properties of the stellar population in the Carina OB1 association are examined with special emphasis on early-type stars. Their spectral characteristics provide some clues to understanding the nature of X-ray formation mechanisms in the winds of single and binary early-type stars.</p> <p><b>Methods:</b> A timing and spectral analysis of five observations with XMM-Newton is performed using various statistical tests and thermal spectral models.</p> <p><b>Results:</b> 235 point sources have been detected within the field of view. Several of these sources are probably pre-main sequence stars with characteristic short-term variability. Seven sources are possible background AGNs. Spectral analysis of twenty four sources of type OB and WR 25 was performed. We derived spectral parameters of the sources and their fluxes in three energy bands. Estimating the interstellar absorption for every source and the distance to the nebula, we derived X-ray luminosities of these stars and compared them to their bolometric luminosities. We discuss possible reasons for the fact that, on average, the observed X-ray properties of binary and single early type stars are not very different, and give several possible explanations.</p&gt

    The turbulent destruction of clouds - I. A k-epsilon treatment of turbulence in 2D models of adiabatic shock-cloud interactions

    Full text link
    The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. However, the formation of fully developed turbulence has often been prevented by the artificial viscosity inherent in hydrodynamical simulations, and a uniform post-shock flow has been assumed in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogenities upstream of the cloud. To address these twin issues we use a sub-grid compressible k-epsilon turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. We find that cloud destruction in inviscid and k-epsilon models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and inter-cloud medium is less than 100. However, there are increasing and significant differences as this contrast increases. Clouds subjected to strong ``buffeting'' by a highly turbulent post-shock environment are destroyed significantly quicker. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirms the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock-cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied (abridged).Comment: 31 pages, 22 figures, accepted for publication in MNRA
    corecore