13 research outputs found

    Abstract A1: Impact of CYP2D6*10 and CYP3A5*3 Polymorphisms on the Pharmacokinetics of Tamoxifen in Asian Breast Cancer Patients

    No full text
    Tamoxifen (TAM) is a selective estrogen receptor modulator employed in the treatment of breast cancer. It is a prodrug with a complex metabolic pathway involving several phase I and II metabolic enzymes. TAM is metabolized by cytochrome P450 (CYP) enzymes to N-desmethyltamoxifen (NDM), 4-hydroxytamoxifen (4OHT) and endoxifen (END) with 4OHT and END being the active metabolites of TAM. CYP2D6 and CYP3A4/5 comprises the major CYP isoforms mediating the metabolism of TAM although other CYP isoforms also play a role. Polymorphisms present in genes encoding these CYP enzymes may influence the metabolism and pharmacokinetics of TAM and its metabolites

    Complementary Sequential Circulating Tumor Cell (CTC) and Cell-Free Tumor DNA (ctDNA) Profiling Reveals Metastatic Heterogeneity and Genomic Changes in Lung Cancer and Breast Cancer

    No full text
    Introduction Circulating tumor cells (CTCs) and cell-free tumor DNA (ctDNA) are tumor components present in circulation. Due to the limited access to both CTC enrichment platforms and ctDNA sequencing in most laboratories, they are rarely analyzed together. Methods Concurrent isolation of ctDNA and single CTCs were isolated from lung cancer and breast cancer patients using the combination of size-based and CD45-negative selection method via DropCell platform. We performed targeted amplicon sequencing to evaluate the genomic heterogeneity of CTCs and ctDNA in lung cancer and breast cancer patients. Results Higher degrees of genomic heterogeneity were observed in CTCs as compared to ctDNA. Several shared alterations present in CTCs and ctDNA were undetected in the primary tumor, highlighting the intra-tumoral heterogeneity of tumor components that were shed into systemic circulation. Accordingly, CTCs and ctDNA displayed higher degree of concordance with the metastatic tumor than the primary tumor. The alterations detected in circulation correlated with worse survival outcome for both lung and breast cancer patients emphasizing the impact of the metastatic phenotype. Notably, evolving genetic signatures were detected in the CTCs and ctDNA samples during the course of treatment and disease progression. Conclusions A standardized sample processing and data analysis workflow for concurrent analysis of CTCs and ctDNA successfully dissected the heterogeneity of metastatic tumor in circulation as well as the progressive genomic changes that may potentially guide the selection of appropriate therapy against evolving tumor clonality

    Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in breast cancer

    No full text
    Background: Neoadjuvant chemotherapy (NAC) plays an important role in the management of locally advanced breast cancer. It allows for downstaging of tumors, potentially allowing for breast conservation. NAC also allows for in-vivo testing of the tumors’ response to chemotherapy and provides important prognostic information. There are currently no clearly defined clinical models that incorporate imaging with clinical data to predict response to NAC. Thus, the aim of this work is to develop a predictive AI model based on routine CT imaging and clinical parameters to predict response to NAC. Methods: The CT scans of 324 patients with NAC from multiple centers in Singapore were used in this study. Four different radiomics models were built for predicting pathological complete response (pCR): first two were based on textural features extracted from peri-tumoral and tumoral regions, the third model based on novel space-resolved radiomics which extract feature maps using voxel-based radiomics and the fourth model based on deep learning (DL). Clinical parameters were included to build a final prognostic model. Results: The best performing models were based on space-resolved and DL approaches. Space-resolved radiomics improves the clinical AUCs of pCR prediction from 0.743 (0.650 to 0.831) to 0.775 (0.685 to 0.860) and our DL model improved it from 0.743 (0.650 to 0.831) to 0.772 (0.685 to 0.853). The tumoral radiomics model performs the worst with no improvement of the AUC from the clinical model. The peri-tumoral combined model gives moderate performance with an AUC of 0.765 (0.671 to 0.855). Conclusions: Radiomics features extracted from diagnostic CT augment the predictive ability of pCR when combined with clinical features. The novel space-resolved radiomics and DL radiomics approaches outperformed conventional radiomics techniques.W.L.N. is supported by the National Medical Research Council Fellowship (NMRC/MOH-000166-00)

    Cross-ancestry genome-wide association study defines the extended CYP2D6 locus as the principal genetic determinant of endoxifen plasma concentrations

    No full text
    The therapeutic efficacy of tamoxifen is predominantly mediated by its active metabolites 4-hydroxy-tamoxifen and endoxifen, whose formation is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6). Yet, known CYP2D6 polymorphisms only partially determine metabolite concentrations in vivo. We performed the first cross-ancestry genome-wide association study with well-characterized patients of European, Middle-Eastern, and Asian descent (N = 497) to identify genetic factors impacting active and parent metabolite formation. Genome-wide significant variants were functionally evaluated in an independent liver cohort (N = 149) and in silico. Metabolite prediction models were validated in two independent European breast cancer cohorts (N = 287, N = 189). Within a single 1-megabase (Mb) region of chromosome 22q13 encompassing the CYP2D6 gene, 589 variants were significantly associated with tamoxifen metabolite concentrations, particularly endoxifen and metabolic ratio (MR) endoxifen/N-desmethyltamoxifen (minimal P = 5.4E-35 and 2.5E-65, respectively). Previously suggested other loci were not confirmed. Functional analyses revealed 66% of associated, mostly intergenic variants to be significantly correlated with hepatic CYP2D6 activity or expression (ρ = 0.35 to -0.52), and six hotspot regions in the extended 22q13 locus impacting gene regulatory function. Machine learning models based on hotspot variants (N = 12) plus CYP2D6 activity score (AS) increased the explained variability (~ 9%) compared with AS alone, explaining up to 49% (median R2 ) and 72% of the variability in endoxifen and MR endoxifen/N-desmethyltamoxifen, respectively. Our findings suggest that the extended CYP2D6 locus at 22q13 is the principal genetic determinant of endoxifen plasma concentration. Long-distance haplotypes connecting CYP2D6 with adjacent regulatory sites and nongenetic factors may account for the unexplained portion of variability.</p

    Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study in multiple populations

    No full text

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to &lt; 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of &amp; GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P &lt; 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo
    corecore