13,166 research outputs found

    The late time radio emission from SN 1993J at meter wavelengths

    Full text link
    We present the investigations of SN 1993J using low frequency observations with the Giant Meterwave Radio Telescope. We analyze the light curves of SN 1993J at 1420, 610, 325 and 243 MHz during 7.5107.5-10 years since explosion.The supernova has become optically thin early on in the 1420 MHz and 610 MHz bands while it has only recently entered the optically thin phase in the 325 MHz band. The radio light curve in the 235 MHz band is more or less flat. This indicates that the supernova is undergoing a transition from an optically thick to optically thin limit in this frequency band. In addition, we analyze the SN radio spectra at five epochs on day 3000, 3200, 3266, 3460 and 3730 since explosion. Day 3200 spectrum shows a synchrotron cooling break. SN 1993J is the only young supernova for which the magnetic field and the size of the radio emitting region are determined through unrelated methods. Thus the mechanism that controls the evolution of the radio spectra can be identified. We suggest that at all epochs, the synchrotron self absorption mechanism is primarily responsible for the turn-over in the spectra. Light curve models based on free free absorption in homogeneous or inhomogeneous media at high frequencies overpredict the flux densities at low frequencies. The discrepancy is increasingly larger at lower and lower frequencies. We suggest that an extra opacity, sensitively dependent on frequency, is likely to account for the difference at lower frequencies. The evolution of the magnetic field (determined from synchrotron self absorption turn-over) is roughly consistent with Bt1B \propto t^{-1}. Radio spectral index in the optically thin part evolves from α0.81.0\alpha \sim 0.8-1.0 at few tens of days to 0.6\sim 0.6 in about 10 years.Comment: 37 pages, 9 figures in LaTex; scheduled for ApJ 10 September 2004, v612 issue; send comments to: [email protected]

    The Deep Diffuse Extragalactic Radio Sky at 1.75 GHz

    Full text link
    We present a study of diffuse extragalactic radio emission at 1.751.75\,GHz from part of the ELAIS-S1 field using the Australia Telescope Compact Array. The resulting mosaic is 2.462.46\,deg2^2, with a roughly constant noise region of 0.610.61\,deg2^2 used for analysis. The image has a beam size of 150×60150 \times60\,arcsec and instrumental σn=(52±5)μ\langle\sigma_{\rm n}\rangle= (52\pm5)\, \muJy beam1^{-1}. Using point-source models from the ATLAS survey, we subtract the discrete emission in this field for S150μS \ge 150\, \muJy beam1^{-1}. Comparison of the source-subtracted probability distribution, or \pd, with the predicted distribution from unsubtracted discrete emission and noise, yields an excess of (76±23)μ(76 \pm 23) \, \muJy beam1^{-1}. Taking this as an upper limit on any extended emission we constrain several models of extended source counts, assuming Ωsource2\Omega_{\rm source} \le 2\,arcmin. The best-fitting models yield temperatures of the radio background from extended emission of Tb=(10±7)T_{\rm b}=(10\pm7) \,mK, giving an upper limit on the total temperature at 1.751.75\,GHz of (73±10)(73\pm10)\,mK. Further modelling shows that our data are inconsistent with the reported excess temperature of ARCADE2 to a source-count limit of 1μ1\, \muJy. Our new data close a loop-hole in the previous constraints, because of the possibility of extended emission being resolved out at higher resolution. Additionally, we look at a model of cluster halo emission and two WIMP dark matter annihilation source-count models, and discuss general constraints on any predicted counts from such sources. Finally, we report the derived integral count at 1.41.4\,GHz using the deepest discrete count plus our new extended-emission limits, providing numbers that can be used for planning future ultra-deep surveys.Comment: 18 pages, 15 figures, 7 tables, Accepted by MNRA

    Chromospheric Inversions of a Micro-flaring Region

    Get PDF
    We use spectropolarimetric observations of the Ca II 8542~\AA\ line, taken from the Swedish 1-m Solar Telescope (SST), in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of \sim1000~K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5 - 10 km s1^{-1}. This heating also extends along a nearby chromospheric fibril, co-spatial to 10 - 15 km s1^{-1} down-flows. Strong magnetic flux cancellation is also apparent in one of the footpoints, concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb (EB), though placed slightly higher in the atmosphere than is typically observed.Comment: 9 pages, 9 figures, accepted in ApJ. Movies are stored here: https://star.pst.qub.ac.uk/webdav/public/areid/Microflare

    Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million

    A Bethe Ansatz Study of Free Energy and Excitation Spectrum for Even Spin Fateev Zamolodchikov Model

    Full text link
    A Bethe Ansatz study of a self dual Z_N spin model is undertaken for even spin system. One has to solve a coupled system of Bethe Ansatz Equations (BAE) involving zeroes of two families of transfer matrices. A numerical study on finite size lattices is done for identification of elementary excitations over the Ferromagnetic and Antiferromagnetic ground states. The free energies for both Ferromagnetic and Antiferromagnetic ground states and dispersion relation for elementary excitations are found.Comment: 25 pages, 4 figure

    Studies of sidewall boundary layer in the Langley 0.3 meter transonic cryogenic tunnel with and without suction

    Get PDF
    Boundary layer measurements on the sidewalls of the Langley 0.3 Meter Transonic Cryogenic Tunnel were made to determine the effectiveness of the passive boundary layer bleed system over a Reynolds number range from 20 to 200 x 10 to the sixth power per meter at Mach numbers from 0.30 to 0.76. The tunnel sidewall boundary layer displacement thickness was about 2 percent of the width of the test section without the boundary layer bleed. Measured velocity profiles correlated well with the defect law of Hama. With the boundary layer bleed equivalent to about 2 percent of the test section mass flow, the boundary layer displacement thickness reduced to about 1 percent of the test section width, which is generally considered acceptable for testing airfoils. It was also noticed that effectiveness of the bleed was nearly independent of the Mach number and Reynolds number over the range of conditions tested. A comparison of the measured suction effectiveness of the bleed with the finite difference and integral methods of boundary layer calculation showed good agreement

    Detection of Pulsed X-ray Emission from PSR B1706-44

    Get PDF
    We report the first detection of pulsed X-ray emission from the young, energetic radio and Gamma-ray pulsar PSR B1706-44. We find a periodic signal at a frequency of f = 9.7588088 +/- 0.0000026 Hz (at epoch 51585.34104 MJD), consistent with the radio ephemeris, using data obtained with the High Resolution Camera on-board the Chandra X-ray Observatory}. The probability that this detection is a chance occurrence is 3.5E-5 as judged by the Rayleigh test. The folded light curve has a broad, single-peaked profile with a pulsed fraction of 23% +/- 6%. This result is consistent the ROSAT PSPC upper limit of < 18% after allowing for the ability of Chandra to resolve the pulsar from a surrounding synchrotron nebula. We also fitted Chandra spectroscopic data on PSR B1706-44, which require at least two components, e.g., a blackbody of temperature T(infinity) between 1.51E6 K and 1.83E6 K and a power-law of Gamma = 2.0 +/- 0.5. The blackbody radius at the nominal 2.5 kpc distance is only R(infinity) = 3.6 +/- 0.9 km, indicating either a hot region on a cooler surface, or the need for a realistic atmosphere model that would allow a lower temperature and larger area. Because the power-law and blackbody spectra each contribute more than 23% of the observed flux, it is not possible to decide which component is responsible for the modulation in the spectrally unresolved light curve.Comment: 6 pages, 4 figures, Latex, emulateapj. Published version. Includes an updated radio ephemeris and presents the absolute radio/X-ray phase alignmen

    Experience with some repeat tests on the 9 inch chord CAST-10-2/DOA 2 airfoil model in the Langley 0.3-m TCT adaptive wall test section

    Get PDF
    A co-operative testing program is in progress between the Langley Research Center (NASA) and the National Aeronautical Establishment (NAE, Canada) to validate two different techniques of airfoil testing at transonic speeds. The procedure employed is to test the same airfoil model in the NAE two-dimensional tunnel and the Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT). The airfoil model used in testing was CAST-10-2/DOA-2 super-critical airfoil. The Langley 0.3-m TCT has a relatively small cross section of 13 in x 13 in, giving a (h/c) ratio of 1.44 for the same 9 in chord model. The approach employed in the 0.3-m TCT aims towards eliminating the wall effects by using active walls. The top and bottom walls are flexible. By changing the wall shapes during a test in an iterative manner, the wall interference effects are reduced. The method employed to change the wall shapes is the adaptive wall technique. The current test program provided an opportunity to validate the adaptive wall technique in the 0.3-m TCT. The relatively long chord airfoil represents a severe test case to test the efficacy of the adaptive wall technique under cryogenic conditions. The program also involved removal of side wall boundary-layer thus increasing the complexity of the wall adaptation technique. This paper deals with some salient results obtained regarding repeatability of test data and possible residual interference effects
    corecore