We present the investigations of SN 1993J using low frequency observations
with the Giant Meterwave Radio Telescope. We analyze the light curves of SN
1993J at 1420, 610, 325 and 243 MHz during 7.5−10 years since explosion.The
supernova has become optically thin early on in the 1420 MHz and 610 MHz bands
while it has only recently entered the optically thin phase in the 325 MHz
band. The radio light curve in the 235 MHz band is more or less flat. This
indicates that the supernova is undergoing a transition from an optically thick
to optically thin limit in this frequency band. In addition, we analyze the SN
radio spectra at five epochs on day 3000, 3200, 3266, 3460 and 3730 since
explosion. Day 3200 spectrum shows a synchrotron cooling break. SN 1993J is the
only young supernova for which the magnetic field and the size of the radio
emitting region are determined through unrelated methods. Thus the mechanism
that controls the evolution of the radio spectra can be identified. We suggest
that at all epochs, the synchrotron self absorption mechanism is primarily
responsible for the turn-over in the spectra. Light curve models based on free
free absorption in homogeneous or inhomogeneous media at high frequencies
overpredict the flux densities at low frequencies. The discrepancy is
increasingly larger at lower and lower frequencies. We suggest that an extra
opacity, sensitively dependent on frequency, is likely to account for the
difference at lower frequencies. The evolution of the magnetic field
(determined from synchrotron self absorption turn-over) is roughly consistent
with B∝t−1. Radio spectral index in the optically thin part
evolves from α∼0.8−1.0 at few tens of days to ∼0.6 in about
10 years.Comment: 37 pages, 9 figures in LaTex; scheduled for ApJ 10 September 2004,
v612 issue; send comments to: [email protected]