2,527 research outputs found

    Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment

    Full text link
    Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.Comment: 14 pages, 11 figures, Submitted to NIM

    Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC

    Get PDF
    A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the e+ee^{+}e^{-} mass spectrum, mainly in the low-mass region below 1 GeV/c2^{2}. The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF4_{4} as a radiator and a detector gas. Construction details and the expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure

    A Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the PHENIX experiment at RHIC. The HBD will allow a precise measurement of electron-positron pairs from the decay of the light vector mesons and the low-mass pair continuum in heavy-ion collisions. The detector consists of a 50 cm long radiator filled with pure CF4 and directly coupled in a windowless configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding

    Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method

    Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum

    Full text link
    We report a measurement of low-mass electron pairs observed in 158 GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4 (stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As observed previously in S-Au collisions, the enhancement is most pronounced in the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong increase of the enhancement with centrality. In addition, we show that the enhancement covers a wide range in transverse momentum, but is largest at the lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.

    Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions

    Full text link
    Elliptic flow and two-particle azimuthal correlations of charged hadrons and high-pTp_T pions (pT>p_T> 1 GeV/cc) have been measured close to mid-rapidity in 158A GeV/cc Pb+Au collisions by the CERES experiment. Elliptic flow (v2v_2) rises linearly with pTp_T to a value of about 10% at 2 GeV/cc. Beyond pTp_T\approx 1.5 GeV/cc, the slope decreases considerably, possibly indicating a saturation of v2v_2 at high pTp_T. Two-pion azimuthal anisotropies for pT>p_T> 1.2 GeV/cc exceed the elliptic flow values by about 60% in mid-central collisions. These non-flow contributions are attributed to near-side and back-to-back jet-like correlations, the latter exhibiting centrality dependent broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure

    Azimuthal dependence of pion source radii in Pb+Au collisions at 158 A GeV

    Get PDF
    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.Comment: 5 pages, 2 figure

    Universal Pion Freeze-out in Heavy-Ion Collisions

    Get PDF
    Based on an evaluation of data on pion interferometry and on particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from AGS to RHIC.Comment: 5 pages, 3 figures, revised version resubmitted to PR

    Elliptic flow of charged pions, protons and strange particles emitted in Pb+Au collisions at top SPS energy

    Full text link
    Differential elliptic flow spectra v2(pT) of \pi-, K0short, p, \Lambda have been measured at \sqrt(s NN)= 17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb+Au collisions (10% of \sigma(geo)). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for \Lambda) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow v2(pT) is derived as a constituent, besides \pi+ and K+, of the elliptic flow of positive pion candidates. The retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 were adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming \pi+ and \pi- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series \pi- - K0short - p - \Lambda, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf= 160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous dynamics studies which focus on late hadronic stages.Comment: 38 pages, 27 figures, 2 tables. Abstract and parts of introduction made more comprehensible; corrected typos; acknowledgement added. To appear in Nucl.Phys.
    corecore