13 research outputs found

    Efficient Object Detection in Mobile and Embedded Devices with Deep Neural Networks

    Get PDF
    [EN] Neural networks have become the standard for high accuracy computer vision. These algorithms can be built with arbitrarily large architectures to handle an ever growing complexity in the data they process. State of the art neural network architectures are primarily concerned with increasing the recognition accuracy when performing inference on an image, which creates an insatiable demand for energy and compute power. These models are primarily targeted to run on dense compute units such as GPUs. In recent years, demand to allow these models to execute in limited capacity environments such as smartphones, however even the most compact variations of these state of the art networks constantly push the boundaries of the power envelop under which they run. With the emergence of the Internet of Things, it is becoming a priority to enable mobile systems to perform image recognition at the edge, but with small energy requirements. This thesis focuses on the design and implementation of an object detection neural network that attempts to solve this problem, providing reasonable accuracy rates with extremely low compute power requirements. This is achieved by re-imagining the meta architecture of traditional object detection models and discovering a mechanism to classify and localize objects through a set of neural network based algorithms that are better aimed to mobile and embedded devices. The main contributions of this thesis are: (i) provide a better image processing algorithm that is more suitable at preparing data for consumption by taking advantage of the characteristics of the ISP available in these devices; (ii) provide a neural network architecture that maintains acceptable accuracy targets with minimal computational requirements by making efficient use of basic neural algorithms; and (iii) provide a programming framework for how these systems can be most efficiently implemented in a manner that is optimized for the underlying hardware units available in these devices by taking into account memory and computation restrictions

    Neural Networks through Shared Maps in Mobile Devices

    Get PDF
    We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition

    Ear Detection and Localization with Convolutional Neural Networks in Natural Images and Videos.

    Get PDF
    [EN]The difficulty in precisely detecting and locating an ear within an image is the first step to tackle in an ear-based biometric recognition system, a challenge which increases in difficulty when working with variable photographic conditions. This is in part due to the irregular shapes of human ears, but also because of variable lighting conditions and the ever changing profile shape of an ear’s projection when photographed. An ear detection system involving multiple convolutional neural networks and a detection grouping algorithm is proposed to identify the presence and location of an ear in a given input image. The proposed method atches the performance of other methods when analyzed against clean and purpose-shot photographs, reaching an accuracy of upwards of 98%, but clearly outperforms them with a rate of over 86% when the system is subjected to non-cooperative natural images where the subject appears in challenging orientations and photographic conditions

    Texture Classification with Neural Networks

    Get PDF
    Texture classification poses a well known difficulty within computer vision systems. This paper reviews a method for image segmentation based on the classification of textures using artificial neural networks. The supervised machine learning system developed here is able to recognize and distinguish among multiple feature regions within one or more photographs, where areas of interest are characterized by the various patterns of color and shape they exhibit. The use of an enhancement filter to reduce sensitivity to illumination and orientation changes in images is explored, as well as various post-processing techniques to improve the classification results based on context grouping. Various applications of the system are examined, including the geographical segmentation of satellite images and a brief overview of the model’s performance when employed on a real time video stream

    Neural Networks through Shared Maps in Mobile Devices

    Get PDF
    We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition

    A Brief Review of the Ear Recognition Process using Deep Neural Networks

    Get PDF
    The process of precisely recognize people by ears has been getting major attention in recent years. It represents an important step in the biometric research, especially as a complement to face recognition systems which have difficult in real conditions. This is due to the great variation in shapes, variable lighting conditions, and the changing profile shape which is a planar representation of a complex object. An ear recognition system involving a convolutional neural networks (CNN) is proposed to identify a person given an input image. The proposed method matches the performance of other traditional approaches when analyzed against clean photographs. However, the F1 metric of the results shows improvements in specificity of the recognition. We also present a technique for improving the speed of a CNN applied to large input images through the optimization of the sliding window approac

    Neural Networks through Shared Maps in Mobile Devices

    No full text
    We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition

    Neural Networks through Shared Maps in Mobile Devices

    No full text
    We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition

    Shared Map Convolutional Neural Networks for Real-Time Mobile Image Recognition

    Get PDF
    We present a technique for improving the speed of a convolutional neural network applied to large input images through the optimization of the sliding window approach. Meaningful performance gains and memory bandwidth reduction can be obtained by processing images in this manner, factors which play a crucial role in the deployment of deep neural networks within mobile devices

    Neural Networks through Shared Maps in Mobile Devices

    No full text
    We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition
    corecore