61 research outputs found

    PENGARUH KUALITAS PELAYANAN TERHADAP KEPUASAN KONSUMEN DI PT. RAMAYANA MOTOR SUKOHARJO

    Get PDF
    This final project writing aims to find out the satisfaction level the consumers feel on the service given by PT Ramayana Motor Sukoharjo through the dimensions of service quality including Tangible, Reliability, Responsiveness, Assurance and empathy. The problem statement developed in this research is to find out the consumer satisfaction level on the performance given by PT. Ramayana Motor Sukoharjo. Technique of collecting data employed was observation, interview, and questionnaire method. The sampling technique used was simple random sampling with 100 respondents. In this research, technique of discussing used was descriptive analysis one, namely, the one to make a systematic, factual and accurate description about an object studied, while the consumer satisfaction was measured using importance performance analysis. From the research on 100 respondents about the service quality given by PT. Ramayana Motor Sukoharjo, it can be found that the results of consumer assessment on the performance given by the company include: viewed from the importance performance analysis, the highest consumer satisfaction level is in service procedure attribute or factor that will be done quickly, it can be seen from the percentage goodness of fit level of 113.28%, while the smallest attribute is that the employees have knowledge to answer the consumers’ question of 71.15%. The conclusion that can be drawn is that the result of Cartesian diagram of factors becomes the primary priority of PT. Ramayana Motor Sukoharjo and should be done because this factor is considered as important by the company and consumers, including: non strategic and not affordable dealer location, unattractive and untidy physical facility appearance. The recommendation given is that from the location side, the dealer should post the banner in front of its building so that the consumers can find the dealer location easily. From physical facility side, the product arrangement should be adjusted with the types of each product. Keywords: Tangible, Reliability, Responsiveness, Assurance and empathy

    Formation and Stability of Synaptic Receptor Domains

    Get PDF
    Neurotransmitter receptor molecules, concentrated in postsynaptic domains along with scaffold and a number of other molecules, are key regulators of signal transmission across synapses. Employing experiment and theory, we develop a quantitative description of synaptic receptor domains in terms of a reaction-diffusion model. We show that interactions between only receptor and scaffold molecules, together with the rapid diffusion of receptors on the cell membrane, are sufficient for the formation and stable characteristic size of synaptic receptor domains. Our work reconciles long-term stability of synaptic receptor domains with rapid turnover and diffusion of individual receptors.Comment: 5 pages, 3 figures, Supplementary Materia

    Dynamical Adaptation in Photoreceptors

    Get PDF
    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∌ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant

    Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism

    Get PDF
    Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules, concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.National Science Foundation (U.S.) (Award DMR-1206323

    Chemotaxis When Bacteria Remember: Drift versus Diffusion

    Get PDF
    {\sl Escherichia coli} ({\sl E. coli}) bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a bacterium resets its memory at tumbles -- a fact not borne out by experiment -- and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased diffusion, and we discuss the way it departs from older coarse-grained descriptions.Comment: Revised version, journal reference adde

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Interpretation of correlated neural variability from models of feed-forward and recurrent circuits.

    No full text
    Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures-recurrent connections, shared feed-forward projections, and shared gain fluctuations-on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing

    Noisy Memory and Over-Reaction to News

    No full text
    International audienc

    Optimally Imprecise Memory and Biased Forecasts

    No full text
    We propose a model of optimal decision making subject to a memory constraint. The constraint is a limit on the complexity of memory measured using Shannon's mutual information, as in models of rational inattention; but our theory differs from that of Sims (2003) in not assuming costless memory of past cognitive states. We show that the model implies that both forecasts and actions will exhibit idiosyncratic random variation; that average beliefs will also differ from rational-expectations beliefs, with a bias that fluctuates forever with a variance that does not fall to zero even in the long run; and that more recent news will be given disproportionate weight in forecasts. We solve the model under a variety of assumptions about the degree of persistence of the variable to be forecasted and the horizon over which it must be forecasted, and examine how the nature of forecast biases depends on these parameters. The model provides a simple explanation for a number of features of reported expectations in laboratory and field settings, notably the evidence of over-reaction in elicited forecasts documented by Afrouzi et al. (2020) and Bordalo et al. (2020a)
    • 

    corecore