3,443 research outputs found

    The Importance of Parity-Dependence of the Nuclear Level Density in the Prediction of Astrophysical Reaction Rates

    Full text link
    A simple description for obtaining the parity distribution of nuclear levels in the pf + g9/2 shell as a function of excitation energy was recently derived. We implement this in a global nuclear level density model. In the framework of the statistical model, cross sections and astrophysical reaction rates are calculated in the Fe region and compared to rates obtained with the common assumption of an equal distribution of parities. We find considerable differences, especially for reactions involving particles in the exit channel.Comment: 4 pages, to appear in the proceedings of CGS11 (Prague), World Scientifi

    Measurement of (α,n) reaction cross sections of erbium isotopes for testing astrophysical rate predictions

    Get PDF
    Date of Acceptance: 30/01/2015The γ-process in core-collapse and/or type Ia supernova explosions is thought to explain the origin of the majority of the so-called p nuclei (the 35 proton-rich isotopes between Se and Hg). Reaction rates for γ-process reaction network studies have to be predicted using Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of α-widths at astrophysical energies which are an essential input for the statistical model. It has an impact on the reliability of abundance predictions in the upper mass range of the p nuclei. With the measurement of the 164,166Er(α,n)167,169Yb reaction cross sections at energies close to the astrophysically relevant energy range we tested the recently suggested low energy modification of the α+nucleus optical potential in a mass region where γ-process calculations exhibit an underproduction of the p nuclei. Using the same optical potential for the α-width which was derived from combined 162Er(α,n) and 162Er(α,γ) measurement makes it plausible that a low-energy modification of the optical α+nucleus potential is needed.Peer reviewedFinal Accepted Versio

    Coulomb suppression of the stellar enhancement factor

    Get PDF
    It is commonly assumed that reaction measurements for astrophysics should be preferably performed in the direction of positive Q value to minimize the impact of the stellar enhancement factor, i.e. the difference between the laboratory rate and the actual stellar rate. We show that the stellar effects can be minimized in the charged particle channel, even when the reaction Q value is negative. As a demonstration, the cross section of the astrophysically relevant 85Rb(p,n)85Sr reaction has been measured by activation between 2.16 < Ec.m. < 3.96 MeV and the astrophysical reaction rate for (p,n) as well as (n,p) is directly inferred from the data. The presented arguments are also relevant for other alpha and proton-induced reactions in the p and rp processes. Additionally, our results confirm a previously derived modification of a global optical proton potential.Comment: submitted to PR

    70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies

    Get PDF
    The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.Comment: Accepted for publication in Phys. Rev.

    Abundance Uncertainties Obtained With the PizBuin Framework For Monte Carlo Reaction Rate Variations

    Get PDF
    Uncertainties in nucleosynthesis models originating from uncertainties in astrophysical reaction rates were estimated in a Monte Carlo variation procedure. Thousands of rates were simultaneously varied within individual, temperature-dependent errors to calculate their combined effect on final abundances. After a presentation of the method, results from application to three different nucleosynthesis processes are shown: the Îł\gamma-process and the s-process in massive stars, and the main s-process in AGB stars (preliminary results). Thermal excitation of nuclei in the stellar plasma and the combined action of several reactions increase the final uncertainties above the level of the experimental errors. The total uncertainty, on the other hand, remains within a factor of two even in processes involving a large number of unmeasured rates, with some notable exceptions for nuclides whose production is spread over several stellar layers and for s-process branchings.Comment: 8 pages, 4 figures; Proceedings of OMEG 2017, Daejeon, Korea, June 27-30, 2017; to appear in AIP Conf. Pro

    Alpha-induced reactions for the astrophysical p-process: the case of 151Eu

    Get PDF
    The cross sections of 151Eu(alpha,gamma)155Tb and 151Eu(alpha,n)154Tb reactions have been measured with the activation method. Some aspects of the measurement are presented here to illustrate the requirements of experimental techniques needed to obtain nuclear data for the astrophysical p-process nucleosynthesis. Preliminary cross section results are also presented and compared with the predictions of statistical model calculations.Comment: Accepted for publication in Journal of Physics Conference Series, proceeding of the Nuclear Physics in Astrophysics IV. conferenc

    Parity-Dependence in the Nuclear Level Density

    Get PDF
    Astrophysical reaction rates are sensitive to the parity distribution at low excitation energies. We combine a formula for the energy-dependent parity distribution with a microscopic-macroscopic nuclear level density. This approach describes well the transition from low excitation energies, where a single parity dominates, to high excitations where the two densities are equal.Comment: 4 pages, 3 figures; contribution to Nuclei In The Cosmos VIII, to appear in Nucl. Phys.

    Alpha-induced cross sections of 106Cd for the astrophysical p-process

    Get PDF
    The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the energy range of the Gamow window for the astrophysical p-process scenario. The cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the (alpha,n) threshold have also been determined. The results are compared with predictions of the statistical model code NON-SMOKER using different input parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn when using the standard optical potentials can be removed with a different alpha+106Cd potential. Some astrophysical implications are discussed.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev

    Alpha Clustering and the stellar nucleosynthesis of carbon

    Get PDF
    The astrophysical S--factor and reaction rates for the triple--alpha process are calculated in the direct--capture model. It is shown that the stellar carbon production is extremely sensitive to small variations in the N--N interaction.Comment: 2 pages LaTe

    The Path to Improved Reaction Rates for Astrophysics

    Get PDF
    This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and alpha particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided.Comment: 100 pages, 33 figures, 1 table; accepted for publication in Int. J. Mod. Phys. E (scheduled for February 2011 issue); the formatting here differs in that it includes a table of contents and numbered paragraphs 5.4.2.1-5.4.2.10; v2: updated references; v3: typos fixed; v4: final typo fix, content similar to published version
    • …
    corecore