7,754 research outputs found

    Transformation toughened ceramics for the heavy duty diesel engine technology program

    Get PDF
    The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated

    Dynamics of the Tippe Top -- properties of numerical solutions versus the dynamical equations

    Full text link
    We study the relationship between numerical solutions for inverting Tippe Top and the structure of the dynamical equations. The numerical solutions confirm oscillatory behaviour of the inclination angle θ(t)\theta(t) for the symmetry axis of the Tippe Top. They also reveal further fine features of the dynamics of inverting solutions defining the time of inversion. These features are partially understood on the basis of the underlying dynamical equations

    Stationary problems for equation of the KdV type and dynamical rr-matrices.

    Get PDF
    We study a quite general family of dynamical rr-matrices for an auxiliary loop algebra L(su(2)){\cal L}({su(2)}) related to restricted flows for equations of the KdV type. This underlying rr-matrix structure allows to reconstruct Lax representations and to find variables of separation for a wide set of the integrable natural Hamiltonian systems. As an example, we discuss the Henon-Heiles system and a quartic system of two degrees of freedom in detail.Comment: 25pp, LaTe

    Prospective genetic screening decreases the incidence of Abacavir hypersensitivity reactions in the Western Australian HIV cohort study

    Get PDF
    Abacavir therapy is associated with significant drug hypersensitivity in ∼8% of recipients, with retrospective studies indicating a strong genetic association with the HLA-B*5701 allelle. In this prospective study, involving 260 abacavir-naive individuals (7.7% of whom were positive for HLA-B*5701), we confirm the usefulness of genetic risk stratification, with no cases of abacavir hypersensitivity among 148 HLA-B*5701–negative recipients

    Superlattice with hot electron injection: an approach to a Bloch oscillator

    Full text link
    A semiconductor superlattice with hot electron injection into the miniband is considered. The injection changes the stationary distribution function and results in a qualitative change of the frequency behaviour of the differential conductivity. In the regime with Bloch oscillating electrons and injection into the upper part of the miniband the region of negative differential conductivity is shifted from low frequencies to higher frequencies. We find that the dc differential conductivity can be made positive and thus the domain instability can be suppressed. At the same time the high-frequency differential conductivity is negative above the Bloch frequency. This opens a new way to make a Bloch oscillator operating at THz frequencies.Comment: RevTeX, 8 pages, 2 figures, to be published in Phys. Rev. B, 15 Januar 200

    The blue-edge problem of the V1093 Her instability strip revisited using evolutionary models with atomic diffusion

    Get PDF
    We have computed a new grid of evolutionary subdwarf B star (sdB) models from the start of central He burning, taking into account atomic diffusion due to radiative levitation, gravitational settling, concentration diffusion, and thermal diffusion. We have computed the non-adiabatic pulsation properties of the models and present the predicted p-mode and g-mode instability strips. In previous studies of the sdB instability strips, artificial abundance enhancements of Fe and Ni were introduced in the pulsation driving layers. In our models, the abundance enhancements of Fe and Ni occur naturally, eradicating the need to use artificial enhancements. We find that the abundance increases of Fe and Ni were previously underestimated and show that the instability strip predicted by our simulations solves the so-called blue edge problem of the subdwarf B star g-mode instability strip. The hottest known g-mode pulsator, KIC 10139564, now resides well within the instability strip {even when only modes with low spherical degrees (l<=2) are considered.Comment: 7 pages, 7 figures. Accepted for publication in Astronomy & Astrophysic

    Berry phase in entangled systems: a proposed experiment with single neutrons

    Full text link
    The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the ``spin-echo'' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a Bell inequality. Furthermore we suggest an experimental realization of our setup within neutron interferometry.Comment: 10 pages, 6 figures, Introduction extended, References adde

    Connecting geodesics and security of configurations in compact locally symmetric spaces

    Full text link
    A pair of points in a riemannian manifold makes a secure configuration if the totality of geodesics connecting them can be blocked by a finite set. The manifold is secure if every configuration is secure. We investigate the security of compact, locally symmetric spaces.Comment: 27 pages, 2 figure

    A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    Get PDF
    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production
    corecore