636 research outputs found

    The Cosmic Ultraviolet Baryon Survey (CUBS) I. Overview and the diverse environments of Lyman limit systems at z<1

    Full text link
    We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z<~1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman Limit Systems (LLSs) at zabs~ 17.2 over a total redshift survey pathlength of dz=9.3, and a number density of n(z)=0.43 (-0.18, +0.26). Considering all absorbers with log N(HI)/cm^-2 > 16.5 leads to n(z)=1.08 (-0.25, +0.31) at z<1. All LLSs exhibit a multi-component structure and associated metal transitions from multiple ionization states such as CII, CIII, MgII, SiII, SiIII, and OVI absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than 0.1L* at d<~300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disk, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d=15 to 72 pkpc and intrinsic luminosities from ~0.01L* to ~3L*. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.Comment: 26 pages, 14 figures, MNRAS in pres

    Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis

    Get PDF
    Visual components of trauma memories are often vividly re-experienced by survivors with deleterious consequences for normal function. Neuroimaging research on trauma has primarily focused on threat-processing circuitry as core to trauma-related dysfunction. Conversely, limited attention has been given to visual circuitry which may be particularly relevant to posttraumatic stress disorder (PTSD). Prior work suggests that the ventral visual stream is directly related to the cognitive and affective disturbances observed in PTSD and may be predictive of later symptom expression. The present study used multimodal magnetic resonance imaging data (n = 278) collected two weeks after trauma exposure from the AURORA study, a longitudinal, multisite investigation of adverse posttraumatic neuropsychiatric sequelae. Indices of gray and white matter were combined using data fusion to identify a structural covariance network (SCN) of the ventral visual stream 2 weeks after trauma. Participant\u27s loadings on the SCN were positively associated with both intrusion symptoms and intensity of nightmares. Further, SCN loadings moderated connectivity between a previously observed amygdala-hippocampal functional covariance network and the inferior temporal gyrus. Follow-up MRI data at 6 months showed an inverse relationship between SCN loadings and negative alterations in cognition in mood. Further, individuals who showed decreased strength of the SCN between 2 weeks and 6 months had generally higher PTSD symptom severity over time. The present findings highlight a role for structural integrity of the ventral visual stream in the development of PTSD. The ventral visual stream may be particularly important for the consolidation or retrieval of trauma memories and may contribute to efficient reactivation of visual components of the trauma memory, thereby exacerbating PTSD symptoms. Potentially chronic engagement of the network may lead to reduced structural integrity which becomes a risk factor for lasting PTSD symptoms

    Prior Sexual Trauma Exposure Impacts Posttraumatic Dysfunction and Neural Circuitry Following a Recent Traumatic Event in the AURORA Study

    Get PDF
    Background: Prior sexual trauma (ST) is associated with greater risk for posttraumatic stress disorder after a subsequent traumatic event; however, the underlying neurobiological mechanisms remain opaque. We investigated longitudinal posttraumatic dysfunction and amygdala functional dynamics following admission to an emergency department for new primarily nonsexual trauma in participants with and without previous ST. Methods: Participants (N = 2178) were recruited following acute trauma exposure (primarily motor vehicle collision). A subset (n = 242) completed magnetic resonance imaging that included a fearful faces task and a resting-state scan 2 weeks after the trauma. We investigated associations between prior ST and several dimensions of posttraumatic symptoms over 6 months. We further assessed amygdala activation and connectivity differences between groups with or without prior ST. Results: Prior ST was associated with greater posttraumatic depression (F1,1120 = 28.35, p = 1.22 × 10−7, ηp2 = 0.06), anxiety (F1,1113 = 17.43, p = 3.21 × 10−5, ηp2 = 0.05), and posttraumatic stress disorder (F1,1027 = 11.34, p = 7.85 × 10−4, ηp2 = 0.04) severity and more maladaptive beliefs about pain (F1,1113 = 8.51, p = .004, ηp2 = 0.02) but was not related to amygdala reactivity to fearful versus neutral faces (all ps \u3e .05). A secondary analysis revealed an interaction between ST and lifetime trauma load on the left amygdala to visual cortex connectivity (peak Z value: −4.41, corrected p \u3c .02). Conclusions: Findings suggest that prior ST is associated with heightened posttraumatic dysfunction following a new trauma exposure but not increased amygdala activity. In addition, ST may interact with lifetime trauma load to alter neural circuitry in visual processing regions following acute trauma exposure. Further research should probe the relationship between trauma type and visual circuitry in the acute aftermath of trauma

    The AURORA Study: A Longitudinal, Multimodal Library of Brain Biology and Function after Traumatic Stress Exposure

    Get PDF
    Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among civilian trauma survivors and military veterans. These APNS, as traditionally classified, include posttraumatic stress, postconcussion syndrome, depression, and regional or widespread pain. Traditional classifications have come to hamper scientific progress because they artificially fragment APNS into siloed, syndromic diagnoses unmoored to discrete components of brain functioning and studied in isolation. These limitations in classification and ontology slow the discovery of pathophysiologic mechanisms, biobehavioral markers, risk prediction tools, and preventive/treatment interventions. Progress in overcoming these limitations has been challenging because such progress would require studies that both evaluate a broad spectrum of posttraumatic sequelae (to overcome fragmentation) and also perform in-depth biobehavioral evaluation (to index sequelae to domains of brain function). This article summarizes the methods of the Advancing Understanding of RecOvery afteR traumA (AURORA) Study. AURORA conducts a large-scale (n = 5000 target sample) in-depth assessment of APNS development using a state-of-the-art battery of self-report, neurocognitive, physiologic, digital phenotyping, psychophysical, neuroimaging, and genomic assessments, beginning in the early aftermath of trauma and continuing for 1 year. The goals of AURORA are to achieve improved phenotypes, prediction tools, and understanding of molecular mechanisms to inform the future development and testing of preventive and treatment interventions

    A Novel Role for the Centrosomal Protein, Pericentrin, in Regulation of Insulin Secretory Vesicle Docking in Mouse Pancreatic β-cells

    Get PDF
    The centrosome is important for microtubule organization and cell cycle progression in animal cells. Recently, mutations in the centrosomal protein, pericentrin, have been linked to human microcephalic osteodysplastic primordial dwarfism (MOPD II), a rare genetic disease characterized by severe growth retardation and early onset of type 2 diabetes among other clinical manifestations. While the link between centrosomal and cell cycle defects may account for growth deficiencies, the mechanism linking pericentrin mutations with dysregulated glucose homeostasis and pre-pubertal onset of diabetes is unknown. In this report we observed abundant expression of pericentrin in quiescent pancreatic β-cells of normal animals which led us to hypothesize that pericentrin may have a critical function in β-cells distinct from its known role in regulating cell cycle progression. In addition to the typical centrosome localization, pericentrin was also enriched with secretory vesicles in the cytoplasm. Pericentrin overexpression in β-cells resulted in aggregation of insulin-containing secretory vesicles with cytoplasmic, but not centrosomal, pericentriolar material and an increase in total levels of intracellular insulin. RNAi- mediated silencing of pericentrin in secretory β-cells caused dysregulated secretory vesicle hypersecretion of insulin into the media. Together, these data suggest that pericentrin may regulate the intracellular distribution and secretion of insulin. Mice transplanted with pericentrin-depleted islets exhibited abnormal fasting hypoglycemia and inability to regulate blood glucose normally during a glucose challenge, which is consistent with our in vitro data. This previously unrecognized function for a centrosomal protein to mediate vesicle docking in secretory endocrine cells emphasizes the adaptability of these scaffolding proteins to regulate diverse cellular processes and identifies a novel target for modulating regulated protein secretion in disorders such as diabetes

    Post-traumatic stress and future substance use outcomes: leveraging antecedent factors to stratify risk

    Get PDF
    BackgroundPost-traumatic stress disorder (PTSD) and substance use (tobacco, alcohol, and cannabis) are highly comorbid. Many factors affect this relationship, including sociodemographic and psychosocial characteristics, other prior traumas, and physical health. However, few prior studies have investigated this prospectively, examining new substance use and the extent to which a wide range of factors may modify the relationship to PTSD.MethodsThe Advancing Understanding of RecOvery afteR traumA (AURORA) study is a prospective cohort of adults presenting at emergency departments (N = 2,943). Participants self-reported PTSD symptoms and the frequency and quantity of tobacco, alcohol, and cannabis use at six total timepoints. We assessed the associations of PTSD and future substance use, lagged by one timepoint, using the Poisson generalized estimating equations. We also stratified by incident and prevalent substance use and generated causal forests to identify the most important effect modifiers of this relationship out of 128 potential variables.ResultsAt baseline, 37.3% (N = 1,099) of participants reported likely PTSD. PTSD was associated with tobacco frequency (incidence rate ratio (IRR): 1.003, 95% CI: 1.00, 1.01, p = 0.02) and quantity (IRR: 1.01, 95% CI: 1.001, 1.01, p = 0.01), and alcohol frequency (IRR: 1.002, 95% CI: 1.00, 1.004, p = 0.03) and quantity (IRR: 1.003, 95% CI: 1.001, 1.01, p = 0.001), but not with cannabis use. There were slight differences in incident compared to prevalent tobacco frequency and quantity of use; prevalent tobacco frequency and quantity were associated with PTSD symptoms, while incident tobacco frequency and quantity were not. Using causal forests, lifetime worst use of cigarettes, overall self-rated physical health, and prior childhood trauma were major moderators of the relationship between PTSD symptoms and the three substances investigated.ConclusionPTSD symptoms were highly associated with tobacco and alcohol use, while the association with prospective cannabis use is not clear. Findings suggest that understanding the different risk stratification that occurs can aid in tailoring interventions to populations at greatest risk to best mitigate the comorbidity between PTSD symptoms and future substance use outcomes. We demonstrate that this is particularly salient for tobacco use and, to some extent, alcohol use, while cannabis is less likely to be impacted by PTSD symptoms across the strata

    CRL4 antagonizes SCFFbxo7-mediated turnover of cereblon and BK channel to regulate learning and memory

    Get PDF
    Intellectual disability (ID), one of the most common human developmental disorders, can be caused by genetic mutations in Cullin 4B (Cul4B) and cereblon (CRBN). CRBN is a substrate receptor for the Cul4A/B-DDB1 ubiquitin ligase (CRL4) and can target voltage- and calcium-activated BK channel for ER retention. Here we report that ID-associated CRL4CRBNmutations abolish the interaction of the BK channel with CRL4, and redirect the BK channel to the SCFFbxo7ubiquitin ligase for proteasomal degradation. Glioma cell lines harbouring CRBN mutations record density-dependent decrease of BK currents, which can be restored by blocking Cullin ubiquitin ligase activity. Importantly, mice with neuron-specific deletion of DDB1 or CRBN express reduced BK protein levels in the brain, and exhibit similar impairment in learning and memory, a deficit that can be partially rescued by activating the BK channel. Our results reveal a competitive targeting of the BK channel by two ubiquitin ligases to achieve exquisite control of its stability, and support changes in neuronal excitability as a common pathogenic mechanism underlying CRL4CRBN–associated ID

    Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

    Get PDF
    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism
    • …
    corecore