29 research outputs found

    Assessing the effectiveness of the Ramsar Convention in preserving wintering waterbirds in the Mediterranean

    Get PDF
    lthough biological conservation is based on international agreements, its effectiveness depends on how countries implement such recommendations as effective conservation tools. The Ramsar Convention is the oldest international treaty for wetland and waterbird conservation, establishing the world's largest network of protected areas. However, since it does not constitute any binding measure, its effectiveness in protecting wintering waterbird populations at an international scale has been questioned. Here, we use long-term (1991–2012) count data to assess the effectiveness of the Ramsar Convention in the Mediterranean Basin. We compared abundance and temporal trends of 114 waterbird species between 251 Ramsar wetlands and 3486 non-Ramsar wetlands. We found that the Ramsar network is critical for wintering waterbirds, concentrating nearly half of all waterbirds counted in the Mediterranean Basin in only 7% of monitored wetlands. Waterbird trends followed a northwestsoutheast gradient, with a population decrease in the East. A significant and positive Ramsar effect on population trends was only found for the species of higher conservation concern in the Maghreb, particularly when a management plan was implemented. The Ramsar Convention was previously used on very important wetlands for waterbirds in Southern Europe, but is now an underused conservation tool. Our study suggests weaknesses in the use of Ramsar as an effective conservation tool in most of the Mediterranean Basin. However, the Ramsar Convention effectiveness to enhance waterbird populations in the Maghreb should encourage strengthening the Ramsar Convention. It should be done particularly in countries with limited environmental agreements and by systematic implementation of management plans. Conservation measures International conventions Protected areas Protection status Monitoring WetlandsacceptedVersio

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape

    RF magnetron-sputtered coatings deposited from biphasic calcium phosphate targets for biomedical implant applications

    No full text
    Bioactive calcium phosphate coatings were deposited by radio-frequency magnetron sputtering from biphasic targets of hydroxyapatite and tricalcium phosphate, sintered at different mass % ratios. According to Raman scattering and X-ray diffraction data, the deposited hydroxyapatite coatings have a disordered structure. High-temperature treatment of the coatings in air leads to a transformation of the quasi-amorphous structure into a crystalline one. A correlation has been observed between the increase in the Ca content in the coatings and a subsequent decrease in Ca in the biphasic targets after a series of deposition processes. It was proposed that the addition of tricalcium phosphate to the targets would led to a finer coating's surface topography with the average size of 78 nm for the structural elements

    Assessing the effectiveness of the Ramsar Convention in preserving wintering waterbirds in the Mediterranean

    Get PDF
    lthough biological conservation is based on international agreements, its effectiveness depends on how countries implement such recommendations as effective conservation tools. The Ramsar Convention is the oldest international treaty for wetland and waterbird conservation, establishing the world's largest network of protected areas. However, since it does not constitute any binding measure, its effectiveness in protecting wintering waterbird populations at an international scale has been questioned. Here, we use long-term (1991–2012) count data to assess the effectiveness of the Ramsar Convention in the Mediterranean Basin. We compared abundance and temporal trends of 114 waterbird species between 251 Ramsar wetlands and 3486 non-Ramsar wetlands. We found that the Ramsar network is critical for wintering waterbirds, concentrating nearly half of all waterbirds counted in the Mediterranean Basin in only 7% of monitored wetlands. Waterbird trends followed a northwestsoutheast gradient, with a population decrease in the East. A significant and positive Ramsar effect on population trends was only found for the species of higher conservation concern in the Maghreb, particularly when a management plan was implemented. The Ramsar Convention was previously used on very important wetlands for waterbirds in Southern Europe, but is now an underused conservation tool. Our study suggests weaknesses in the use of Ramsar as an effective conservation tool in most of the Mediterranean Basin. However, the Ramsar Convention effectiveness to enhance waterbird populations in the Maghreb should encourage strengthening the Ramsar Convention. It should be done particularly in countries with limited environmental agreements and by systematic implementation of management plans. Conservation measures International conventions Protected areas Protection status Monitoring Wetland

    First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils

    No full text
    Electrons have been accelerated from ultra-thin diamond-like carbon (DLC) foils by an ultrahigh-intensity laser pulse. A distinct quasi-monoenergetic electron spectrum peaked at 30 MeV is observed at a target thickness as thin as 5 nm which is in contrast to the observations of wide spectral distributions for thicker targets. At the same time, a substantial drop in laser-accelerated ion energies is found. The experimental findings give first indication that relativistic electron sheets can be generated from ultra-thin foils which in future may be used to generate brilliant X-ray beams by the coherent reflection of a second laser
    corecore