50 research outputs found

    Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism

    Get PDF
    SignificanceRheumatoid arthritis (RA) is a debilitating chronic inflammatory disease in which symptoms exhibit a strong time-of-day rhythmicity. RA is commonly associated with metabolic disturbance and increased incidence of diabetes and cardiovascular disease, yet the mechanisms underlying this metabolic dysregulation remain unclear. Here, we demonstrate that rhythmic inflammation drives reorganization of metabolic programs in distal liver and muscle tissues. Chronic inflammation leads to mitochondrial dysfunction and dysregulation of fatty acid metabolism, including accumulation of inflammation-associated ceramide species in a time-of-day-dependent manner. These findings reveal multiple points for therapeutic intervention centered on the circadian clock, metabolic dysregulation, and inflammatory signaling

    Integrating Phosphorylation Network with Transcriptional Network Reveals Novel Functional Relationships

    Get PDF
    Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score) to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors

    Further development of the Children’s Mathematics Anxiety Scale UK (CMAS-UK) for ages 4–7 years

    Get PDF
    There are currently many mathematics anxiety rating scales designed typically for adult and older children populations, yet there remains a lack of assessment tools for younger children ( 0.45) and high internal consistency (α = 0.88). A single factor model of Online Mathematics Anxiety was related to the experience of an entire mathematics lesson, from first entering the classroom to completing a task. A significant negative correlation was observed between the CMAS-UK and mathematics performance scores, suggesting that children who score high for mathematics anxiety tend to score to perform less well on a mathematics task. Subsequent confirmatory factor analysis was conducted to test a range of module structures; the shortened 19-item CMAS-UK was found to have similar model indices as the 26-item model, resulting in the maintenance of the revised scale. To conclude, the 19-item CMAS-UK provides a reliable assessment of children’s mathematics anxiety and has been shown to predict mathematics performance. This research points towards the origins of mathematics anxiety occurring when number is first encountered and supports the utility of the CMAS-UK. Subsequent research in the area should consider and appropriately define an affective component that may underlie mathematics anxiety at older ages. Mathematics anxiety relates to more complex procedures that elude the experiences of younger children and may instead be the result of number-based experiences in the early years of education.N/

    Flexibility of a Eukaryotic Lipidome – Insights from Yeast Lipidomics

    Get PDF
    Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism

    A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements

    Get PDF
    Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore