17 research outputs found

    Rapid Decreasing in the Orbital Period of the Detached White Dwarf?main Sequence Binary SDSS J143547.87+373338.5

    Get PDF
    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 M⊙ and a fully convective star with a mass of 0.21 M⊙. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed?calculated (O?C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of dot{P}=-8.04× {10}-11 s s‑1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O?C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.ͩ000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be {M}3{sin}{i}prime =0.0189(+/- 0.0016) M⊙ when a total mass of 0.71 M⊙ for SDSS J143547.87+373338.5 is adopted. For orbital inclinations {i}prime ≥slant 15uildrel{circ}over{.} 9, it would be below the stable hydrogen-burning limit of M3 ∼ 0.072 M⊙, and thus the third body would be a brown dwarf.Fil: Qian, S. B.. Chinese Academy of Sciences; República de ChinaFil: Han, Z. T.. Chinese Academy of Sciences; República de ChinaFil: Soonthornthum, B.. National Astronomical Research Institute of Thailand; TailandiaFil: Zhu, L. Y.. Chinese Academy of Sciences; República de ChinaFil: He, J. J.. Chinese Academy of Sciences; República de ChinaFil: Rattanasoon, S.. National Astronomical Research Institute of Thailand; TailandiaFil: Aukkaravittayapun, S.. National Astronomical Research Institute of Thailand; TailandiaFil: Liao, W. P.. Chinese Academy of Sciences; República de ChinaFil: Zhao, E. G.. Chinese Academy of Sciences; República de ChinaFil: Zhang, J.. Chinese Academy of Sciences; República de ChinaFil: Fernandez Lajus, Eduardo Eusebio. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentin

    SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured

    Get PDF
    We present high-speed, multicolour photometry of the faint, eclipsing cataclysmic variable (CV) SDSS J105754.25+275947.5. The light from this system is dominated by the white dwarf. Nonetheless, averaging many eclipses reveals additional features from the eclipse of the bright spot. This enables the fitting of a parameterised eclipse model to these average light curves, allowing the precise measurement of system parameters. We find a mass ratio of q = 0.0546 ±\pm 0.0020 and inclination i = 85.74 ±\pm 0.21∘^{\circ}. The white dwarf and donor masses were found to be Mw_{\mathrm{w}} = 0.800 ±\pm 0.015 M⊙_{\odot} and Md_{\mathrm{d}} = 0.0436 ±\pm 0.0020 M⊙_{\odot}, respectively. A temperature Tw_{\mathrm{w}} = 13300 ±\pm 1100 K and distance d = 367 ±\pm 26 pc of the white dwarf were estimated through fitting model atmosphere predictions to multicolour fluxes. The mass of the white dwarf in SDSS 105754.25+275947.5 is close to the average for CV white dwarfs, while the donor has the lowest mass yet measured in an eclipsing CV. A low-mass donor and an orbital period (90.44 min) significantly longer than the period minimum strongly suggest that this is a bona fide period-bounce system, although formation from a white dwarf/brown dwarf binary cannot be ruled out. Very few period-minimum/period-bounce systems with precise system parameters are currently known, and as a consequence the evolution of CVs in this regime is not yet fully understood

    Rapid decreasing in the orbital period of the detached white dwarf-main sequence binary SDSS J143547.87+373338.5

    Get PDF
    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 Mo and a fully convective star with a mass of 0.21 Mo. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed-calculated (O-C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of s s-1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O-C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be Mo when a total mass of 0.71 Mo for SDSS J143547.87+373338.5 is adopted. For orbital inclinations , it would be below the stable hydrogen-burning limit of M3 ∼ 0.072 Mo, and thus the third body would be a brown dwarf.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    SDSS J001641-000925: The first stable red dwarf contact binary with a close-in stellar companion

    Get PDF
    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P ∼ 8 s yr-1. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O-C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M3 sin i′ ∼ 0.14 M⊙. The orbital separation between the third body and the central binary is about 2.8AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Using Gaussian processes to model light curves in the presence of flickering: the eclipsing cataclysmic variable ASASSN-14ag

    Get PDF
    The majority of cataclysmic variable (CV) stars contain a stochastic noise component in their light curves, commonly referred to as flickering. This can significantly affect the morphology of CV eclipses and increases the difficulty in obtaining accurate system parameters with reliable errors through eclipse modelling. Here we introduce a new approach to eclipse modelling, which models CV flickering with the help of Gaussian processes (GPs). A parameterised eclipse model - with an additional GP component - is simultaneously fit to 8 eclipses of the dwarf nova ASASSN-14ag and system parameters determined. We obtain a mass ratio qq = 0.149 ±\pm 0.016 and inclination ii = 83.4 −0.6+0.9^{+0.9}_{-0.6} ∘^{\circ}. The white dwarf and donor masses were found to be MwM_{w} = 0.63 ±\pm 0.04 M⊙M_{\odot} and MdM_{d} = 0.093 −0.012+0.015^{+0.015}_{-0.012} M⊙M_{\odot}, respectively. A white dwarf temperature TwT_{w} = 14000 −2000+2200^{+2200}_{-2000} K and distance dd = 146 −20+24^{+24}_{-20} pc were determined through multicolour photometry. We find GPs to be an effective way of modelling flickering in CV light curves and plan to use this new eclipse modelling approach going forward

    SDSS J001641-000925: The first stable red dwarf contact binary with a close-in stellar companion

    Get PDF
    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P ∼ 8 s yr-1. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O-C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M3 sin i′ ∼ 0.14 M⊙. The orbital separation between the third body and the central binary is about 2.8AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Testing the white dwarf mass-radius relationship with eclipsing binaries

    Get PDF
    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass–radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon–oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon–oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10−5 ≥ MH/MWD ≥ 10−4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution

    Rapid decreasing in the orbital period of the detached white dwarf-main sequence binary SDSS J143547.87+373338.5

    Get PDF
    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 Mo and a fully convective star with a mass of 0.21 Mo. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed-calculated (O-C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of s s-1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O-C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be Mo when a total mass of 0.71 Mo for SDSS J143547.87+373338.5 is adopted. For orbital inclinations , it would be below the stable hydrogen-burning limit of M3 ∼ 0.072 Mo, and thus the third body would be a brown dwarf.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    SDSS J001641-000925: The first stable red dwarf contact binary with a close-in stellar companion

    Get PDF
    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P ∼ 8 s yr-1. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O-C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M3 sin i′ ∼ 0.14 M⊙. The orbital separation between the third body and the central binary is about 2.8AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat
    corecore