128 research outputs found

    An almond-enriched diet increases plasma α-tocopherol and improves vascular function but does not affect oxidative stress markers or lipid levels

    Get PDF
    Vascular dysfunction is one of the major causes of cardiovascular (CV) mortality and increases with age. Epidemiological studies suggest that Mediterranean diets and high nut consumption reduce CV disease risk and mortality while increasing plasma α-tocopherol. Therefore, we have investigated whether almond supplementation can improve oxidative stress markers and CV risk factors over 4 weeks in young and middle-aged men. Healthy middle-aged men (56 ± 5.8 years), healthy young men (22.1 ± 2.9 years) and young men with two or more CV risk factors (27.3 ± 5 years) consumed 50 g almond/day for 4 weeks. A control group maintained habitual diets over the same period. Plasma α-tocopherol/cholesterol ratios were not different between groups at baseline and were significantly elevated by almond intervention with 50 g almond/day for 4 weeks (p < 0.05). Plasma protein oxidation and nitrite levels were not different between groups whereas, total-, HDL- and LDL-cholesterols and triglycerides were significantly higher in healthy middle-aged and young men with CV risk factors but were not affected by intake. In the almond-consuming groups, flow-mediated dilatation (FMD) improved and systolic blood pressure reduced significantly after 50 g almonds/day for 4 weeks, but diastolic blood pressure reduced only in healthy men. In conclusion, a short-term almond-enriched diet can increase plasma α-tocopherol and improve vascular function in asymptomatic healthy men aged between 20 and 70 years without any effect on plasma lipids or markers of oxidative stress. © 2014 Informa UK, Ltd

    Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and in vitro Iron Availability of Sorghum Grains

    Get PDF
    Background: It has been predicted that the global temperature will rise in the future, which means crops including sorghum will likely be grown under higher temperatures, and consequently may affect the nutritional properties. Methods: The effects of two growth temperatures (OT, day/night 32/21°C; HT 38/21°C) on tannin, phytate, mineral, and in vitro iron availability of raw and cooked grains (as porridge) of six sorghum genotypes were investigated. Results: Tannin content significantly decreased across all sorghum genotypes under high growth temperature (P ≀0.05), while the phytate and mineral contents maintained the same level, increased or decreased significantly, depending on the genotype. The in vitro iron availability in most sorghum genotypes was also significantly reduced under high temperature, except for Ai4, which showed a pronounced increase (P ≀0.05). The cooking process significantly reduced tannin content in all sorghum genotypes (P ≀0.05), while the phytate content and in vitro iron availability were not significantly affected. Conclusions: This research provides some new information on sorghum grain nutritional properties when grown under predicted future higher temperatures, which could be important for humans where sorghum grains are consumed as staple food

    Elevated Proteasome Capacity Extends Replicative Lifespan in Saccharomyces cerevisiae

    Get PDF
    Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans

    Patterns and associates of cognitive function, psychosocial wellbeing and health in the Lothian Birth Cohort 1936

    Get PDF
    BACKGROUND: Cognitive function, psychosocial wellbeing and health are important domains of function. Consistencies and inconsistencies in patterns of wellbeing across these domains may be informative about wellbeing in old age and the ways it is manifested amongst individuals. In this study we investigated whether there were groups of individuals with different profiles of scores across these domains. We also aimed to identify characteristics of any evident groups by comparing them on variables that were not used in identifying the groups. METHODS: The sample was the Lothian Birth Cohort 1936, which included 1091 participants born in 1936. They are a community-dwelling, narrow-age-range sample of 70-year-olds. Most had taken part in the Scottish Mental Survey 1947 at an average age of 11, making available a measure of childhood intelligence. We used latent class analysis (LCA) to explore possible profiles using 9 variables indicating cognitive functioning, psychosocial wellbeing and health status. Demographic, personality, and lifestyle variables – none of which were used in the LCA – were used to characterize the resulting profile groups. RESULTS: We accepted a 3-group solution, which we labeled High Wellbeing (65.3%), Low Cognition (20.3%), and Low Bio-Psychosocial (14.5%). Notably, the High Wellbeing group had significantly higher childhood IQ, lower Neuroticism scores, and a lower percentage of current smokers than the other 2 groups. CONCLUSION: The majority of individuals were functioning generally well; however, there was evidence of the presence of groups with different profiles, which may be explained in part in terms of cognitive ability differences. Results suggested that higher life-long intelligence, personality traits associated with less mental distress, and basic health practices such as avoiding smoking are important associates of wellbeing in old age

    Lysosomes in iron metabolism, ageing and apoptosis

    Get PDF
    The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∌4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∌50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place

    The impact of diabetes on the pathogenesis of sepsis

    Get PDF
    Diabetes is associated with an increased susceptibility to infection and sepsis. Conflicting data exist on whether the mortality of patients with sepsis is influenced by the presence of diabetes, fuelling the ongoing debate on the benefit of tight glucose regulation in patients with sepsis. The main reason for which diabetes predisposes to infection appears to be abnormalities of the host response, particularly in neutrophil chemotaxis, adhesion and intracellular killing, defects that have been attributed to the effect of hyperglycaemia. There is also evidence for defects in humoral immunity, and this may play a larger role than previously recognised. We review the literature on the immune response in diabetes and its potential contribution to the pathogenesis of sepsis. In addition, the effect of diabetes treatment on the immune response is discussed, with specific reference to insulin, metformin, sulphonylureas and thiazolidinediones

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    • 

    corecore