84 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Disruption prediction with artificial intelligence techniques in tokamak plasmas

    No full text
    In nuclear fusion reactors, plasmas are heated to very high temperatures of more than 100 million kelvin and, in so-called tokamaks, they are confined by magnetic fields in the shape of a torus. Light nuclei, such as deuterium and tritium, undergo a fusion reaction that releases energy, making fusion a promising option for a sustainable and clean energy source. Tokamak plasmas, however, are prone to disruptions as a result of a sudden collapse of the system terminating the fusion reactions. As disruptions lead to an abrupt loss of confinement, they can cause irreversible damage to present-day fusion devices and are expected to have a more devastating effect in future devices. Disruptions expected in the next-generation tokamak, ITER, for example, could cause electromagnetic forces larger than the weight of an Airbus A380. Furthermore, the thermal loads in such an event could exceed the melting threshold of the most resistant state-of-the-art materials by more than an order of magnitude. To prevent disruptions or at least mitigate their detrimental effects, empirical models obtained with artificial intelligence methods, of which an overview is given here, are commonly employed to predict their occurrence—and ideally give enough time to introduce counteracting measures

    Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance

    No full text
    Tumor development is often associated with a deep alteration of normal myelopoiesis, leading to a progressive accumulation of various cellular elements, belonging to myelomonocytic lineage, in the tumor bed, in the blood, and in both primary and secondary lymphoid organs. This heterogeneous pool of cells expresses, in the mouse, the common markers CD11b and Gr-1 (Ly6C/G) and is endowed with the ability to suppress antigen and/or polyclonal-driven T cell immune response. These cells, named myeloid-derived suppressor cells (MDSCs), are mobilized from hematopoietic organs by cytokines and other factors produced by the tumors, as well as by strong activation of the immune system, and have a profound influence on the outcome of the T cell-dependent immune responses. MDSCs can restrain T cell function directly in an antigen-independent manner; however, in vivo, MDSCs can also process and present tumor-associated antigen and can lead to T cell tolerance in an antigen-specific manner. Furthermore, MDSCs seem to be key players in tumor-induced suppressive network that includes T regulatory (Treg) cells, inhibitory natural killer T (NKT) cells, mast cells, Th17, as well as effector T cells. The importance of MDSCs in human malignancies has been demonstrated in recent years and new approaches targeting their suppressive/tolerogenic action are currently being tested in both preclinical model and clinical trials

    Cell Fusion and Dendritic Cell-Based Vaccines

    No full text

    Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments

    No full text
    In this paper we validate the finite element code RAPLICASOL, which models radiofrequency wave propagation in edge plasmas near ICRF antennas, against calculations with the TOPICA code. We compare the output of both codes for the ASDEX Upgrade 2-strap antenna, and for a 4-strap WEST-like antenna. Although RAPLICASOL requires considerably fewer computational resources than TOPICA, we find that the predicted quantities of experimental interest (including reflection coefficients, coupling resistances, S- and Z-matrix entries, optimal matching settings, and even radiofrequency electric fields) are in good agreement provided we are careful to use the same geometry in both codes

    Sawtooth pacing with on-axis ICRH modulation in JET-ILW

    No full text
    A novel technique for sawteeth control in tokamak plasmas using ion-cyclotron resonance heating (ICRH) has been developed in the JET-ILW tokamak. Unlike previous ICRH methods, that explored the destabilization of the internal kink mode when the radio-frequency (RF) wave absorption was placed near the q = 1 surface, the technique presented here consists of stabilizing the sawteeth as fast as possible by applying the ICRH power centrally and subsequently induce a sawtooth crash by switching it off at the appropriate instant. The validation of this method in JET-ILW L-mode discharges, including preliminary tests in H-mode plasmas, is presented

    Hybrid cancellation of ripple disturbances arising in AC/DC converters

    No full text
    In AC/DC converters, a peculiar periodic nonsmooth waveform arises, the so-called ripple. In this paper we propose a novel model that captures this nonsmoothness by means of a hybrid dynamical system performing state jumps at certain switching instants, and we illustrate its properties with reference to a three phase diode bridge rectifier. As the ripple corrupts an underlying desirable signal, we propound two observer schemes ensuring asymptotic estimation of the ripple, the first with and the second without knowledge of the switching instants. Our theoretical developments are well placed in the context of recent techniques for hybrid regulation and constitute a contribution especially for our second observer, where the switching instants are estimated. Once asymptotic estimation of the ripple is achieved, the ripple can be conveniently canceled from the desirable signal, and thanks to the inherent robustness properties of the proposed hybrid formulation, the two observer schemes require only that the desirable signal is slowly time varying compared to the ripple. Exploiting this fact, we illustrate the effectiveness of our second hybrid observation law on experimental data collected from the Joint European Torus tokamak

    High-resolution gamma ray spectroscopy measurements of the fast ion energy distribution in JET He-4 plasmas

    No full text

    Radiation damage and nuclear heating studies in selected functional materials during the JET DT campaign

    No full text
    A new Deuterium-Tritium campaign (DTE2) is planned at JET in the next years, with a proposed 14MeV neutron budget of 1.7×1021, which is nearly an order of magnitude higher than any previous DT campaigns. The neutron and gamma ray fields inside the JET device during DT plasma operations at specific locations have previously been evaluated. It is estimated that a total neutron fluence on the first wall of JET of up to 1020 n/m2 could be achieved, which is comparable to the fluence occurring in ITER at the end of life in the rear part of the port plug, where several diagnostic components will be located.The purpose of the present work is to evaluate the radiation damage and nuclear heating in selected functional materials to be irradiated at JET during DT plasma operation. These quantities are calculated with the use of the MCNP6 code and the FISPACT II code. In particular the neutron and gamma ray fields at specific locations inside the JET device, dedicated to material damage studies, were characterized. The emphasis is on a potential long term irradiation station located close to the first wall at outboard midplane, offering the opportunity to irradiate samples of functional materials used in ITER diagnostics, to assess the degradation of the physical properties. The radiation damage and the nuclear heating were calculated for selected materials irradiated in these positions and for the neutron flux and fluence expected in DTE2. The studied candidate functional materials include, among others, Sapphire, YAG, ZnS, Spinel, Diamond. In addition the activation of the internal irradiation holder itself was calculated with FISPACT. Damage levels in the range of 10-5 dpa were found

    Wave-particle resonances and redistribution/losses of fast ions in tokamaks

    No full text
    corecore