102 research outputs found

    Ballistic Limit Equations for Non-Aluminum Projectiles Impacting Dual-Wall Spacecraft Systems

    Get PDF
    One of the primary design considerations of earth-orbiting spacecraft is the mitigation of the damage that might occur from an on-orbit MMOD impact. Traditional damage-resistant design consists of a \u27bumper\u27 that is placed a small distance away from a spacecraft component or from the wall of the element in which it is housed. The performance of such a multi-wall structural element is typically characterized by its ballistic limit equation (BLE), which defines the threshold particle size that results in a failure of the spacecraft element. BLEs are also key components of any micro-meteoroid/orbital debris (MMOD) risk assessment calculations. However, these assessments often call for BLEs to predict impact response for projectiles made of materials not used in the development of those BLEs. The question naturally arises regarding how close are the predictions of such BLEs when used in impact scenarios involving projectiles made of materials not necessarily considered in their development. In an effort to address this issue, a study was performed with the objective of assessing the validity of the NNO BLE for non-aluminum particles. Particle materials considered included steel, copper, and Al2O3 (i.e. particles that are made of materials that are more dense than aluminum). Comparisons are made between actual test results involving these non-aluminum projectiles and the predictions of the NNO BLE. In nearly all cases, the NNO BLE was found not to work very well in the predicting failure / no failure response of these non-aluminum projectiles. A new NNO-type BLE is then developed that can be used to more reliably predict the response of dual-wall systems under the hypervelocity impact of such heavier non-aluminum projectiles

    A First-Principles-Based Model for Crack Formation in a Pressurized Tank Following an MMOD Impact

    Get PDF
    Most robotic spacecraft have at least one pressurized vessel on board, usually a liquid propellant tank. One of the design considerations of such spacecraft is the anticipation and mitigation of the possible damage that might occur from on-orbit impacts by micro-meteoroids or orbital debris (MMOD). While considerable effort has been expended in the study of the response of non-pressurized spacecraft components to MMOD impacts, relatively few studies have been conducted on the pressurized elements of such spacecraft. In particular, since it was first proposed nearly 45 years ago, NASA\u27s current evaluation methodology for determining impact-induced failure of pressurized tanks has undergone little scrutiny. This paper presents a first-principles based model that has been developed to predict whether or not cracking might start or a through-crack might be created under an impact crater in a thin plate. This model was used to examine the effect of penetration depth on crack formation and whether or not the crack might grow through the tank wall thickness. The predictions of the model are compared to experimental data with encouraging results. The paper also develops some suggestions for future work in this area, including the extension of the first-principles model to include 3-D crack initiation modelling

    A theoretical model for template-free synthesis of long DNA sequence

    Get PDF
    This theoretical scheme is intended to formulate a potential method for high fidelity synthesis of Nucleic Acid molecules towards a few thousand bases using an enzyme system. Terminal Deoxyribonucleotidyl Transferase, which adds a nucleotide to the 3′OH end of a Nucleic Acid molecule, may be used in combination with a controlled method for nucleotide addition and degradation, to synthesize a predefined Nucleic Acid sequence. A pH control system is suggested to regulate the sequential activity switching of different enzymes in the synthetic scheme. Current practice of synthetic biology is cumbersome, expensive and often error prone owing to the dependence on the ligation of short oligonucleotides to fabricate functional genetic parts. The projected scheme is likely to render synthetic genomics appreciably convenient and economic by providing longer DNA molecules to start with

    Design of a Trichromatic Cone Array

    Get PDF
    Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative

    Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects

    Get PDF
    Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Hypervelocity Impact of a Pressurized Vessel: Comparison of Ballistic Limit Equation Predictions with Test Data and Rupture Limit Equation Development

    No full text
    Most spacecraft have at least one pressurized vessel on board. For robotic spacecraft, it is usually a liquid propellant tank. One of the design considerations of such spacecraft is the possible damage that might occur in the event of an on-orbit impact by a micro-meteoroid or orbital debris (MMOD) particle. While considerable effort has been expended in the study of the response of non-pressurized spacecraft components to these kinds of impacts, relatively few studies have been conducted on the pressurized elements of such spacecraft. This paper presents the results of a study performed to address the following aspects of this problem: how well current ballistic limit equations predict impact-induced perforation damage that might occur in pressurized spacecraft components such as tanks; and, the development of data-driven rupture limit equations that can be used to differentiate between impact conditions that would result in only a small hole or crack, from those that would cause catastrophic tank failure. This information would be useful to a design engineer who might be able to select tank materials to avoid catastrophic tank failure in the event of a perforating on-orbit MMOD particle impact. Tank perforation would typically result in a failed mission; and catastrophic tank failure might generate multiple pieces of new debris, increasing the risk to other spacecraft

    Ballistic limit equations for non-aluminum projectiles impacting dual-wall spacecraft systems

    Get PDF
    One of the primary design considerations of earth-orbiting spacecraft is the mitigation of the damage that might occur from an on-orbit MMOD impact. Traditional damage-resistant design consists of a \u27bumper\u27 that is placed a small distance away from a spacecraft component or from the wall of the element in which it is housed. The performance of such a multi-wall structural element is typically characterized by its ballistic limit equation (BLE), which defines the threshold particle size that results in a failure of the spacecraft element. BLEs are also key components of any micro-meteoroid/orbital debris (MMOD) risk assessment calculations. However, these assessments often call for BLEs to predict impact response for projectiles made of materials not used in the development of those BLEs. The question naturally arises regarding how close are the predictions of such BLEs when used in impact scenarios involving projectiles made of materials not necessarily considered in their development. In an effort to address this issue, a study was performed with the objective of assessing the validity of the NNO BLE for non-aluminum particles. Particle materials considered included steel, copper, and Al2O3 (i.e. particles that are made of materials that are more dense than aluminum). Comparisons are made between actual test results involving these non-aluminum projectiles and the predictions of the NNO BLE. In nearly all cases, the NNO BLE was found not to work very well in the predicting failure / no failure response of these non-aluminum projectiles. A new NNO-type BLE is then developed that can be used to more reliably predict the response of dual-wall systems under the hypervelocity impact of such heavier non-aluminum projectiles
    corecore