29 research outputs found

    In situ redox reactions facilitate the assembly of a mixed-valence metal-organic nanocapsule

    Get PDF
    C-alkylpyrogallol[4]arenes (PgCs) have been studied for their ability to form metal-organic nanocapsules (MONCs) through coordination to appropriate metal ions. Here we present the synthesis and characterization of an MnII/MnIII-seamed MONC in addition to its electrochemical and magnetic behavior. This MONC assembles from 24 manganese ions and 6 PgCs, while an additional metal ion is located on the capsule interior, anchored through the introduction of bridging nitrite ions. The latter originate from an in situ redox reaction that occurs during the self-assembly process, thus representing a new route to otherwise unobtainable nanocapsules

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication

    Strategies for the hyperpolarization of acetonitrile and related Ligands by SABRE

    Get PDF
    (Chemical Equation Presented) We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)- (py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H - 1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol

    LOCALITE - A Frameless Neuronavigation System for Interventional Magnetic Resonance Imaging Systems

    No full text
    . LOCALITE is a frameless neuronavigation system that particularly addresses a problem with currentinterventional magnetic resonance imaging #iMRI# systems: non-interactive response time in the interactive scan mode and poor image quality with fast scanning sequences. LOCALITE calculates image planes selected via a handheld localizer from pre- or intra-operativevolume data sets. This approach provides a really interactive localizer device with high quality images. The volume data are generated after the patient has been broughtinto the operating room and #xed within the iMRI. Images are part of an enhanced reality scenario containing only the salient visual information for the intra-operative task rather than letting the surgeon drown in lots of images. First studies show that LOCALITE enables the surgeon to use the iMRI system intuitively and much faster. 1 Introduction With minimally invasiveinterventions, the surgeon's direct view is often extremely restricted. Recent ..

    GridBeans: Support e-Science and Grid Applications

    No full text
    Large-scale scientific research often relies on the collaborative use of Grid and e-Science infrastructures that provide computational or storage related resources. One of the ideas of these modern infrastructures is to facilitate the routine interaction of scientists and their workflows with advanced problem solving tools and computational resources. While many production Grid projects and e-Science infrastructures have begun to offer services for the usage of resources to end-users during the past several years, the corresponding emerging standards defined by GGF and OASIS still appear to be in flux. In this paper, we present the GridBean technology that bridges the gap between the constantly changing basic Grid or e-Science infrastructures and the need of stable application development environments for the Grid users
    corecore