101 research outputs found
White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era
The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach (QG-MM)", in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology
Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era
The unification of quantum mechanics and general relativity has long been
elusive. Only recently have empirical predictions of various possible theories
of quantum gravity been put to test. The dawn of multi-messenger high-energy
astrophysics has been tremendously beneficial, as it allows us to study
particles with much higher energies and travelling much longer distances than
possible in terrestrial experiments, but more progress is needed on several
fronts.
A thorough appraisal of current strategies and experimental frameworks,
regarding quantum gravity phenomenology, is provided here. Our aim is twofold:
a description of tentative multimessenger explorations, plus a focus on future
detection experiments.
As the outlook of the network of researchers that formed through the COST
Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach
(QG-MM)", in this work we give an overview of the desiderata that future
theoretical frameworks, observational facilities, and data-sharing policies
should satisfy in order to advance the cause of quantum gravity phenomenology.Comment: Submitted to CQG for the Focus Issue on "Quantum Gravity
Phenomenology in the Multi-Messenger Era: Challenges and Perspectives".
Please contact us to express interesst of endorsement of this white pape
Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review
The exploration of the universe has recently entered a new era thanks to the
multi-messenger paradigm, characterized by a continuous increase in the
quantity and quality of experimental data that is obtained by the detection of
the various cosmic messengers (photons, neutrinos, cosmic rays and
gravitational waves) from numerous origins. They give us information about
their sources in the universe and the properties of the intergalactic medium.
Moreover, multi-messenger astronomy opens up the possibility to search for
phenomenological signatures of quantum gravity. On the one hand, the most
energetic events allow us to test our physical theories at energy regimes which
are not directly accessible in accelerators; on the other hand, tiny effects in
the propagation of very high energy particles could be amplified by
cosmological distances. After decades of merely theoretical investigations, the
possibility of obtaining phenomenological indications of Planck-scale effects
is a revolutionary step in the quest for a quantum theory of gravity, but it
requires cooperation between different communities of physicists (both
theoretical and experimental). This review is aimed at promoting this
cooperation by giving a state-of-the art account of the interdisciplinary
expertise that is needed in the effective search of quantum gravity footprints
in the production, propagation and detection of cosmic messengers
Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia
Background: We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. Methods: We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93 were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. Results: 380 patients were randomly allocated into Favipiravir (1 9 3) and Lopinavir/Ritonavir (1 8 7) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days SD = 6 in the Favipiravir and 8.1 SD = 6.5 days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 � 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) Conclusion: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay. © 2021 Elsevier B.V
Cosmology with the Laser Interferometer Space Antenna
The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe
Computational Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends
Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given
Improving Decoding of the Mental Activities in BCI Systems using Overlapping FBCSP
95-99<span style="font-size:11.0pt;mso-bidi-font-size:
10.0pt;font-family:" times="" new="" roman","serif";mso-fareast-font-family:"times="" roman";="" letter-spacing:-.1pt;mso-ansi-language:en-gb;mso-fareast-language:en-gb;="" mso-bidi-language:ar-sa"="" lang="EN-GB">Brain Computer Interface (BCI) is an external channel
from brain to the human organs. Therefore, BCI facilitate the disabled people
to move their limbs. Electroencephalogram (EEG) is one of BCI recording signals
which has high temporal resolution with low spatial resolution. Some
researchers proposed common spatial filters to overcome the spatial resolution
deficiency. However, these filters are highly sensitive to the CSP frequency
band and, may decline the BCI performance. Many researchers increased the BCI
performance by using filter bank CSP. They utilized a bank of band-pass filters
to separate CSP in each band. However selecting of the number and the range of
each frequency band becomes troubles ome.In this research work we utilized
FBCSP with flexible overlapping frequency bands to enhance the decoding mental
activities performance. The simulation results indicate that our proposed
technique provides better classification performance (κ=0.62 with
respect to the best κ=0.57 for the winner).</span
- …